IMPACTO DEL ESTRES OXIDATIVO SOBRE LA CAPACIDAD FECUNDANTE DEL GAMETO MASCULINO Y SU ASOCIACION CON ANTICUERPOS ANTIESPERMATOZOIDES





IMPACTO DEL ESTRES OXIDATIVO SOBRE LA CAPACIDAD FECUNDANTE DEL GAMETO MASCULINO Y SU ASOCIACION CON ANTICUERPOS ANTIESPERMATOZOIDES

(especial para SIIC © Derechos reservados)
La peroxidación lipídica es causa potencial de infertilidad masculina. El daño peroxidativo de la membrana conduce a inmovilidad y muerte celular. Los niveles en los que el espermatozoide pierde movilidad in vitro se correlacionan con la tasa de peroxidación lipídica que sufre.
calamera9.jpg Autor:
Calamera, Juan C
Columnista Experto de SIIC

Institución:
Department of Obstetrics and Gynaecology Jones Institute for Reproductive Medicine Virginia, USA


Artículos publicados por Calamera, Juan C
Coautores
Mariano Gabriel Buffone.*  Gustavo F. Doncel.** 
Bioquímico de la Universidad de Buenos Aires. Laboratorio de Estudios en Reproducción (LER), Buenos Aires, Argentina.*
Doctor en Medicina de la Universidad de Buenos Aires. Jones Institute for Reproductive Medicine, Departament of Obstetrics and Gynaecology, Eastern Virginia Medical School, Norfolk, VA, EE.UU.**
Recepción del artículo
20 de Mayo, 2004
Aprobación
10 de Agosto, 2004
Primera edición
21 de Octubre, 2004
Segunda edición, ampliada y corregida
7 de Junio, 2021

Resumen
Se ha sugerido que la peroxidación lipídica es causa potencial de infertilidad masculina. El daño peroxidativo de la membrana conduce a inmovilidad y muerte celular. Los niveles en los que el espermatozoide pierde movilidad in vitro se correlacionan con la tasa de peroxidación lipídica que sufre. Sobre la base de estos conceptos desarrollamos un ensayo denominado estrés test modificado (MOST), que consiste en incubar espermatozoides provenientes de un swim up 4 horas a 40ºC, 5% CO2, en medio de cultivo de Ham F10). Los valores obtenidos por la división de los porcentajes de movilidad preincubación y posincubación, se correlacionaron con fertilización in vitro (FIV) anormal por causa de los espermatozoides. Observaciones preliminares indican que los anticuerpos antiespermatozoides (ASA), otra etiología de infertilidad masculina, podrían ser en parte la causa de los niveles bajos de MOST (anormal). Un estudio retrospectivo de 650 muestras de semen ASA positivos y ASA negativos confirmó esta asociación fundamentada en la significación estadística. El agregado exógeno de ASA, no obstante, no aumentó la tasa de pérdida de movilidad en los espermatozoides normales, creando dudas sobre una posible relación causal entre ASA y valores de MOST anormales. En cambio, esta combinación del fenotipo espermático patológico puede estar relacionada con un defecto común de la membrana plasmática del espermatozoide.

Palabras clave
Anticuerpos antiespermatozoides, peroxidación lipídica, estrés test modificado, movilidad espermática, malondialdehído


Artículo completo

(castellano)
Extensión:  +/-6.71 páginas impresas en papel A4
Exclusivo para suscriptores/assinantes

Abstract
Lipid peroxidation has been suggested as a potential cause of male infertility. Peroxidative damage of the sperm membrane leads to inmotility and cell death. The rate at which spermatozoa lose motility in vitro has been correlated with the rate at which they undergo lipid peroxidation. Based on this premise, we developed an assay, the modified sperm stress test (MOST) which consists of incubations of swim up sperm for 4 hours at 40ºC, 5% CO2, in Ham's F10 medium. Scores obtained from dividing post-incubation by pre-incubation motility percentages, a measure of accelerated motility loss, have been correlated with sperm-related abnormal in-vitro fertilization (IVF) rates. Preliminary observations further indicated that antisperm antibodies (ASA), another known etiology of male infertility, could be in part the cause for low (abnormal) MOST scores. A full retrospective study involving 650 ASA positive and negative semen samples confirmed this association, endowing it with statistical significance. Exogenously added ASA, however, did not increase the rate of motility loss in normal spermatozoa, casting doubts over a possible causal relationship between ASA and abnormal MOST scores. Instead, this combined pathological sperm phenotype might be related to a common sperm plasma membrane defect.

Key words
Antisperm antibodies, lipid peroxidation, sperm stress test, sperm motility, malondialdehyde


Clasificación en siicsalud
Artículos originales > Expertos de Iberoamérica >
página   www.siicsalud.com/des/expertocompleto.php/

Especialidades
Principal: Urología
Relacionadas: Bioquímica, Medicina Reproductiva, Obstetricia y Ginecología



Comprar este artículo
Extensión: 6.71 páginas impresas en papel A4

file05.gif (1491 bytes) Artículos seleccionados para su compra



Enviar correspondencia a:
Calamera, Juan C
Bibliografía del artículo
  1. MacLeod. The rol of oxygen in the metabolism and motility of human spermatozoa. Amer J Physiol, 1943. 138:512-518.
  2. Agarwal A, Saleh RA. Role of oxidants in male infertility: rationale, significance, and treatment. Urol Clin North Am, 2002. 29(4):817-27.
  3. De Lamirande E, Gagnon C. Impact of reactive oxygen species on spermatozoa: a balancing act between beneficial and detrimental effects. Hum Reprod, 1995. 10 Suppl 1:15-21.
  4. Padron OF, Brackett NL, Sharma RK y col. Seminal reactive oxygen species and sperm motility and morphology in men with spinal cord injury. Fertil Steril, 1997. 67(6):1115-20.
  5. Aitken RJ. The Amoroso Lecture. The human spermatozoon--a cell in crisis J Reprod Fertil, 1999. 115(1):1-7.
  6. de Lamirande E, Gagnon C. A positive role for the superoxide anion in triggering hyperactivation and capacitation of human spermatozoa. Int J Androl, 1993. 16(1):21-5.
  7. Aitken RJ. Free radicals, lipid peroxidation and sperm function. Reprod Fertil Dev, 1995. 7(4):659-68.
  8. Sikka SC. Relative impact of oxidative stress on male reproductive function. Curr Med Chem, 2001. 8(7):851-62.
  9. Alvarez JG, Storey BT. Differential incorporation of fatty acids into and peroxidative loss of fatty acids from phospholipids of human spermatozoa. Mol Reprod Dev, 1995. 42(3):334-46.
  10. Zini A, De Lamirande E, Gagnon C. Reactive oxygen species in semen of infertile patients: levels of superoxide dismutase- and catalase-like activities in seminal plasma and spermatozoa. Int J Androl, 1993. 16(3):183-8.
  11. Aitken RJ, Baker MA. Reactive oxygen species generation by human spermatozoa: a continuing enigma. Int J Androl, 2002. 25(4):191-4.
  12. Aitken RJ, Clarkson JS, Fishel S. Generation of reactive oxygen species, lipid peroxidation, and human sperm function. Biol Reprod, 1989. 41(1):183-97.
  13. Aitken RJ, West KM. Analysis of the relationship between reactive oxygen species production and leucocyte infiltration in fractions of human semen separated on Percoll gradients. Int J Androl, 1990. 13(6):433-51.
  14. Aitken RJ, Buckingham DW, West K y col. On the use of paramagnetic beads and ferrofluids to assess and eliminate the leukocytic contribution to oxygen radical generation by human sperm suspensions. Am J Reprod Immunol, 1996. 35(6):541-51.
  15. Gil-Guzman E, Ollero M, Lopez MC y col. Differential production of reactive oxygen species by subsets of human spermatozoa at different stages of maturation. Hum Reprod, 2001. 16(9):1922-30.
  16. Ollero M, Gil-Guzman E, Lopez MC y col. Characterization of subsets of human spermatozoa at different stages of maturation: implications in the diagnosis and treatment of male infertility. Hum Reprod, 2001. 16(9):1912-21.
  17. Bell M, Wang R, Hellstrom WJ y col. Effect of cryoprotective additives and cryopreservation protocol on sperm membrane lipid peroxidation and recovery of motile human sperm. J Androl, 1993. 14(6):472-8.
  18. Alvarez JG, Storey BT. Role of glutathione peroxidase in protecting mammalian spermatozoa from loss of motility caused by spontaneous lipid peroxidation. Gamete Res, 1989. 23(1):77-90.
  19. Evenson DP, Larson KL, Jost LK. Sperm chromatin structure assay: its clinical use for detecting sperm DNA fragmentation in male infertility and comparisons with other techniques. J Androl, 2002. 23(1):25-43.
  20. Fraga CG, Motchnik PA, Wyrobek AJ y col. Smoking and low antioxidant levels increase oxidative damage to sperm DNA. Mutat Res, 1996. 351(2):199-203.
  21. Kodama H, Kuribayashi Y, Gagnon C. Effect of sperm lipid peroxidation on fertilization. J Androl, 1996. 17(2):151-7.
  22. Duru NK, Morshedi M, Schuffner A y col. Semen treatment with progesterone and/or acetyl-L-carnitine does not improve sperm motility or membrane damage after cryopreservation-thawing. Fertil Steril, 2000. 74(4):715-20.
  23. Aitken RJ, Krausz C. Oxidative stress, DNA damage and the Y chromosome. Reproduction, 2001. 122(4):497-506.
  24. Aitken RJ, Paterson M, Fisher H y col. Redox regulation of tyrosine phosphorylation in human spermatozoa and its role in the control of human sperm function. J Cell Sci, 1995. 108 ( Pt 5):2017-25.
  25. Calamera J. Introducción al estudio del espermatozoide, ed. H. Macchi. 1992, Buenos Aires, Argentina.
  26. Sharma RK, Pasqualotto FF, Nelson DR y col. The reactive oxygen species-total antioxidant capacity score is a new measure of oxidative stress to predict male infertility. Hum Reprod, 1999. 14(11):2801-7.
  27. Alvarez JG, Touchstone JC, Blasco L y col. Spontaneous lipid peroxidation and production of hydrogen peroxide and superoxide in human spermatozoa. Superoxide dismutase as major enzyme protectant against oxygen toxicity. J Androl, 1987. 8(5):338-48.
  28. Calamera J, Buffone M, Ollero M y col. Superoxide dismutase content and fatty acid composition in subsets of human spermatozoa from normozoospermic, asthenozoospermic, and polyzoospermic semen samples. Mol Reprod Dev, 2003. 66(4):422-30.
  29. Kobayashi H, Gil-Guzman E, Mahran AM y col. Quality control of reactive oxygen species measurement by luminol-dependent chemiluminescence assay. J Androl, 2001. 22(4):568-74.
  30. Smith R, Vantman D, Ponce D y col. Total antioxidant capacity of human seminal plasma. Hum Reprod, 1996. 11(8):1655-60.
  31. Baehner RL, Boxer LA, Davis J. The biochemical basis of nitroblue tetrazolium reduction in normal human and chronic granulomatous disease polymorphonuclear leukocytes. Blood, 1976. 48(2):309-13.
  32. Enginsu ME, Dumoulin JC, Pieters MH y col. Predictive value of morphologically normal sperm concentration in the medium for in-vitro fertilization. Int J Androl, 1993. 16(2):113-20.
  33. Calamera JC, Giovenco P, Quiros MC y col. Effect of lipid peroxidation upon human spermatic adenosinetriphosphate (ATP). Relationship with motility, velocity and linearity of the spermatozoa. Andrologia, 1989. 21(1):48-54.
  34. Calamera JC, Doncel GF, Olmedo SB y col. Modified sperm stress test: a simple assay that predicts sperm-related abnormal in-vitro fertilization. Hum Reprod, 1998. 13(9):2484-8.
  35. Armstrong JS, Rajasekaran M, Chamulitrat W y col. Characterization of reactive oxygen species induced effects on human spermatozoa movement and energy metabolism. Free Radic Biol Med, 1999. 26(7-8):869-80.
  36. De Lamirande E, Leduc BE, Iwasaki A y col. Increased reactive oxygen species formation in semen of patients with spinal cord injury. Fertil Steril, 1995. 63(3):637-42.
  37. Iwasaki A, Gagnon C. Formation of reactive oxygen species in spermatozoa of infertile patients. Fertil Steril, 1992. 57(2):409-16.
  38. Van Voorhis BJ, Stovall DW, Allen BD y col. Cost-effective treatment of the infertile couple. Fertil Steril, 1998. 70(6):995-1005.
  39. Sikka SC. Role of oxidative stress and antioxidants in andrology and assisted reproductive technology. J Androl, 2004. 25(1):5-18.
  40. Aitken RJ, Ryan AL, Curry BJ y col. Multiple forms of redox activity in populations of human spermatozoa. Mol Hum Reprod, 2003. 9(11):645-61.
  41. Sinha Hikim AP, Swerdloff RS. Hormonal and genetic control of germ cell apoptosis in the testis. Rev Reprod, 1999. 4(1):38-47.
  42. Sakkas D, Moffatt O, Manicardi GC y col. Nature of DNA damage in ejaculated human spermatozoa and the possible involvement of apoptosis. Biol Reprod, 2002. 66(4):1061-7.
  43. Duran EH, Morshedi M, Taylor S y col. Sperm DNA quality predicts intrauterine insemination outcome: a prospective cohort study. Hum Reprod, 2002. 17(12):3122-8.
  44. Kao SH, Chao HT, Wei YH. Multiple deletions of mitochondrial DNA are associated with the decline of motility and fertility of human spermatozoa. Mol Hum Reprod, 1998. 4(7):657-66.
  45. Witkin SS. Sperm-reactive antibodies as measured by enzyme-linked immunosorbent assay. Perspective in immunoreproduction. conception and contraception, ed. F.C.e. Mathur S. 1988: Hemisphere Publishing Co. Washington. USA.
  46. Mazumdar S, Levine AS. Antisperm antibodies: etiology, pathogenesis, diagnosis, and treatment. Fertil Steril, 1998. 70(5):799-810.
  47. Mandelbaum SL, Diamond MP, DeCherney AH. The impact of antisperm antibodies on human infertility. J Urol, 1987. 138(1):1-8.
  48. Matsuda T, Horii Y, Yoshida O. Unilateral obstruction of the vas deferens caused by childhood inguinal herniorrhaphy in male infertility patients. Fertil Steril, 1992. 58(3):609-13.
  49. Vazquez-Levin MH, Kupchik GS, Torres Y y col. Cystic fibrosis and congenital agenesis of the vas deferens, antisperm antibodies and CF-genotype. J Reprod Immunol, 1994. 27(3):199-212.
  50. Witkin SS, Kligman I, Bongiovanni AM. Relationship between an asymptomatic male genital tract exposure to Chlamydia trachomatis and an autoimmune response to spermatozoa. Hum Reprod, 1995. 10(11):2952-5.
  51. Dimitrov DG, Urbanek V, Zverina J y col. Correlation of asthenozoospermia with increased antisperm cell-mediated immunity in men from infertile couples. J Reprod Immunol, 1994. 27(1):3-12.
  52. Kremer J, Jager S. The significance of antisperm antibodies for sperm-cervical mucus interaction. Hum Reprod, 1992. 7(6):781-4.
  53. Steen Y, Forssman L, Lonnerstedt E y col. Anti-sperm IgA antibodies against the equatorial segment of the human spermatozoon are associated with impaired sperm penetration and subfertility. Int J Fertil Menopausal Stud, 1994. 39(1):52-6.
  54. Menge AC, Beitner O. Interrelationships among semen characteristics, antisperm antibodies, and cervical mucus penetration assays in infertile human couples. Fertil Steril, 1989. 51(3):486-92.
  55. Fann CH, Lee CY. Monoclonal antibodies affecting sperm-zona binding and/or zona-induced acrosome reaction. J Reprod Immunol, 1992. 21(2):175-87.
  56. Benoff S, Cooper GW, Hurley I y col. Antisperm antibody binding to human sperm inhibits capacitation induced changes in the levels of plasma membrane sterols. Am J Reprod Immunol, 1993. 30(2-3):113-30.
  57. Alvarez JG, Minaretzis D, Barrett CB y col. The sperm stress test: a novel test that predicts pregnancy in assisted reproductive technologies. Fertil Steril, 1996. 65(2):400-5.
  58. Calamera JC, Doncel GF, Brugo-Olmedo S y col. Male antisperm antibodies: association with a modified sperm stress test and lipid peroxidation. Andrologia, 2002. 34(2):63-8.

Título español
Resumen
 Palabras clave
 Bibliografía
 Artículo completo
(exclusivo a suscriptores)
 Autoevaluación
  Tema principal en SIIC Data Bases
 Especialidades

  English title
 Abstract
 Key words
Full text
(exclusivo a suscriptores)


Autor 
Artículos
Correspondencia
Patrocinio y reconocimiento
Imprimir esta página
 
 
 
 
 
 
 
 
 
 
 
 
Está expresamente prohibida la redistribución y la redifusión de todo o parte de los contenidos de la Sociedad Iberoamericana de Información Científica (SIIC) S.A. sin previo y expreso consentimiento de SIIC.
ua31618