HORMONAS TIROIDEAS, MASTOCITOS Y HUESO





HORMONAS TIROIDEAS, MASTOCITOS Y HUESO

(especial para SIIC © Derechos reservados)
Las hormonas tiroideas son esenciales para el desarrollo, el crecimiento y la mineralización óseos. Los mastocitos de la médula ósea expresan receptores para hormonas tiroideas y se acumulan en un número elevado adyacentes al área del cartílago de crecimiento en ratas hipotiroideas en desarrollo. Estos hallazgos se asociaron con disgenesia del cartílago, depósitos anormales de matriz extracelular y con defectos en la formación ósea, la diferenciación hipertrófica condrocítica y la angiogénesis metafisaria.
williams.jpg Autor:
Graham Williams
Columnista Experto de SIIC
Artículos publicados por Graham Williams
Recepción del artículo
9 de Octubre, 2003
Primera edición
22 de Enero, 2004
Segunda edición, ampliada y corregida
7 de Junio, 2021

Resumen
Los mastocitos sintetizan y secretan histamina y heparina, así como un amplio espectro de enzimas degradadoras de la matriz extracelular, factores de crecimiento, citoquinas y factores proangiogénicos. Muchas de estas moléculas también influyen en el reclutamiento, la diferenciación y la actividad de los osteoclastos, fenómenos que apuntan a la participación de los mastocitos en la regulación del esqueleto y del recambio óseo. Las hormonas tiroideas son esenciales para el desarrollo, el crecimiento y la mineralización del hueso. Recientemente, se comprobó que los mastocitos de la médula ósea expresan receptores para hormonas tiroideas y se acumulan en un número elevado adyacentes al área del cartílago de crecimiento en ratas en desarrollo. Según otros estudios, los mastocitos intervendrían en la pérdida ósea inducida por ooforectomía; y la reciente caracterización de ratones con deficiencia de histamina ha confirmado la participación de los mastocitos en la mineralización y el mantenimiento óseos. Esta revisión resume la información emergente en este nuevo campo que une la biología del mastocito con la integridad del esqueleto.

Palabras clave
Osificación endocondral, mastocitos, osteoclastos, osteoporosis, hormonas tiroideas, cartílago, osteosíntesis, hipotiroidismo, histamina, heparina


Artículo completo

(castellano)
Extensión:  +/-10.98 páginas impresas en papel A4
Exclusivo para suscriptores/assinantes

Abstract
Mast cells synthesize and secrete histamine and heparin as well as a wide range of matrix-degrading enzymes, growth factors, cytokines and pro-angiogenic factors. Many of these molecules also influence the recruitment, differentiation and activity of osteoclasts, thus suggesting a role for mast cells in the regulation of skeletal development and bone turnover. Thyroid hormones are essential for normal skeletal development, growth and bone mineralization. We recently identified that bone marrow mast cells express thyroid hormone receptors and accumulate in increased numbers adjacent to the epiphyseal growth plate in growing rats. Other studies have suggested a role for mast cells in ovariectomy-induced bone loss and the recent characterization of histamine-deficient mice has confirmed a role for mast cells in bone mineralization and maintenance. This review summarizes emerging data in this new field that links mast cell biology with skeletal integrity.

Key words
Osificación endocondral, mastocitos, osteoclastos, osteoporosis, hormonas tiroideas, cartílago, osteosíntesis, hipotiroidismo, histamina, heparina


Full text
(english)
para suscriptores/ assinantes

Clasificación en siicsalud
Artículos originales > Expertos del Mundo >
página   www.siicsalud.com/des/expertocompleto.php/

Especialidades
Principal: Endocrinología y Metabolismo
Relacionadas: Bioquímica, Medicina Interna, Osteoporosis y Osteopatías Médicas



Comprar este artículo
Extensión: 10.98 páginas impresas en papel A4

file05.gif (1491 bytes) Artículos seleccionados para su compra



Bibliografía del artículo
  1. Reiter EO, Rosenfeld RG. 1998. Normal and aberrant growth. In Williams textbook of endocrinology. J.D. Wilson, D.W. Foster, H.M. Kronenberg, and P.R. Larsen, editors. W.B. Saunders Company, Philadelphia, PA. 1427-1507
  2. Harvey CB, O\'Shea PJ, Scott AJ, Robson H, Siebler T, Shalet SM, Samarut J, Chassande O, Williams GR 2002 Molecular mechanisms of thyroid hormone effects on bone growth and function. Mol Genet Metab 75:17-30
  3. Rivkees SA, Bode HH, Crawford JD 1988 Long-term growth in juvenile acquired hypothyroidism: the failure to achieve normal adult stature. N Engl J Med 318:599-602
  4. Segni M, Leonardi E, Mazzoncini B, Pucarelli I, Pasquino AM 1999 Special features of Graves\' disease in early childhood. Thyroid 9:871-877
  5. Williams GR. 2002. Thyroid disease and osteoporosis. In The Oxford Textbook of Endocrinology and Diabetes. J.A. Wass, S.M. Shalet, E. Gale, and S.A. Amiel, editors. Oxford University Press, Oxford, UK. 677-683
  6. Mosekilde L, Eriksen EF, Charles P 1990 Effects of thyroid hormones on bone and mineral metabolism. Endocrinol Metab Clin North Am 19:35-63.
  7. Greenspan SL, Greenspan FS 1999 The effect of thyroid hormones on skeletal integrity. Ann Intern Med 130:750-758
  8. Bauer DC, Nevitt MC, Ettinger B, Stone K 1997 Low thyrotropin levels are not associated with bone loss in older women: a prospective study. J Clin Endocrinol Metab 82:2931-2936.
  9. Bauer DC, Ettinger B, Nevitt MC, Stone KL 2001 Risk for fracture in women with low serum levels of thyroid-stimulating hormone. Ann Intern Med 134:561-568
  10. Siebler T, Robson H, Bromley M, Stevens DA, Shalet SM, Williams GR 2002 Thyroid status affects number and localisation of thyroid hormone receptor expressing mast cells in bone marrow. Bone 30:259-266
  11. Stevens DA, Hasserjian RP, Robson H, Siebler T, Shalet SM, Williams GR 2000 Thyroid hormones regulate hypertrophic chondrocyte differentiation and expression of parathyroid hormone-related peptide and its receptor during endochondral bone formation. J Bone Miner Res 15:2431-2442
  12. Vortkamp A, Lee K, Lanske B, Segre GV, Kronenberg HM, Tabin CJ 1996 Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science 273:613-622
  13. Lanske B, Karaplis AC, Lee K, Luz A, Vortkamp A, Pirro A, Karperien M, Defize LHK, Ho C, Mulligan RC, Abou-Samra AB, Juppner H, Segre GV, Kronenberg HM 1996 PTH/PTHrP receptor in early development and Indian hedgehog-regulated bone growth. Science 273:663-666
  14. Gauthier K, Plateroti M, Harvey CB, Williams GR, Weiss RE, Refetoff S, Willott JF, Sundin V, Roux JP, Malaval L, Hara M, Samarut J, Chassande O 2001 Genetic analysis reveals different functions for the products of the thyroid hormone receptor alpha locus. Mol Cell Biol 21:4748-4760
  15. Stevens DA, Harvey CB, Scott AJ, O\'Shea PJ, Barnard JC, Williams AJ, Brady G, Samarut J, Chassande O, Williams GR 2003 Thyroid hormone activates fibroblast growth factor receptor-1 in bone. Mol Endocrinol 17:1751-1766
  16. Weiss RE, Refetoff S 2000 Resistance to thyroid hormone. Rev Endocr Metab Disord 1:97-108
  17. Weiss RE, Refetoff S 1996 Effect of thyroid hormone on growth. Lessons from the syndrome of resistance to thyroid hormone. Endocrinol Metab Clin North Am 25:719-730
  18. O\'Shea PJ, Harvey CB, Suzuki H, Kaneshige M, Kaneshige K, Cheng S-y, Williams GR 2003 A thyrotoxic skeletal phenotype of advanced bone formation in mice with resistance to thyroid hormone. Mol Endocrinol 17:1410-1424
  19. Kaneshige M, Kaneshige K, Zhu X, Dace A, Garrett L, Carter TA, Kazlauskaite R, Pankratz DG, Wynshaw-Boris A, Refetoff S, Weintraub B, Willingham MC, Barlow C, Cheng S 2000 Mice with a targeted mutation in the thyroid hormone beta receptor gene exhibit impaired growth and resistance to thyroid hormone. Proc Natl Acad Sci USA 97:13209-13214
  20. Kaneshige M, Suzuki H, Kaneshige K, Cheng J, Wimbrow H, Barlow C, Willingham MC, Cheng S-y 2001 A targeted dominant negative mutation of the thyroid hormone alpha 1 receptor causes increased mortality, infertility and dwarfism in mice. Proc Natl Acad Sci USA 98:15095-15100
  21. Kronenberg HM 2003 Developmental regulation of the growth plate. Nature 423:332-336
  22. Bassett JHD, Williams GR 2003 The molecular actions of thyroid hormone in bone. Trends Endocrinol Metab 14:356-364
  23. Boyle WJ, Simonet WS, Lacey DL 2003 Osteoclast differentiation and activation. Nature 423:337-342
  24. Harada S-i, Rodan GA 2003 Control of osteoblast function and regulation of bone mass. Nature 423:349-355
  25. Jilka RL 1998 Cytokines, bone remodeling, and estrogen deficiency: a 1998 update. Bone 23:75-81
  26. Irani AA, Schechter NM, Craig SS, Deblois G, Schwartz LB 1986 Two types of human mast cells that have distinct neutral protease compositions. Proc Natl Acad Sci USA 83:4464-4468
  27. Fang KC, Wolters PJ, Steinhoff M, Bidgol A, Blount JL, Caughey GH 1999 Mast cell expression of gelatinases A and B is regulated by kit ligand and TGF-beta. J Immunol 162:5528-5535
  28. Hiromatsu Y, Toda S 2003 Mast cells and angiogenesis. Microsc Res Tech 60:64-69
  29. Schwartz LB, Austen KF 1984 Structure and function of the chemical mediators of mast cells. Progr Allergy 134:271-321
  30. Liggett W, Shevde N, Anklesaria P, Sohoni S, Greenberger J, Glowacki J 1993 Effects of macrophage colony-stimulating factor and granulocyte-macrophage colony-stimulating factor on osteoclastic differentiation of hematopoietic progenitor cells. Stem Cells 11:398-411
  31. Jilka RL, Hangoc G, Girasole G, Passeri G, Williams DC, Abrams JS, Boyce B, Broxmeyer H, Manolagas SC 1992 Increased osteoclast development after estrogen loss: mediation by interleukin-6. Science 257:88-91
  32. Ornitz DM 2000 FGFs, heparan sulfate and FGFRs: complex interactions essential for development. Bioessays 22:108-112
  33. Ornitz DM, Marie PJ 2002 FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev 16:1446-1465
  34. Gannon FH, Glaser D, Caron R, Thompson LDR, Shore EM, Kaplan FS 2001 Mast cell involvement in fibrodysplasia ossificans progressiva. Hum Pathol 32:842-848
  35. Stevens RL, Somerville LL, Sewell D, Swafford JR, Caulfield JP, Levi-Schaffer F, Hubbard JR, Dayton ET 1992 Serosal mast cells maintain their viability and promote the metabolism of cartilage proteoglycans when cocultured with chondrocytes. Arth Rheum 35:325-335
  36. Schlessinger J, Plotnikov AN, Ibrahimi OA, Eliseenkova AV, Yeh BK, Yayon A, Linhardt RJ, Mohammadi M 2000 Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Mol Cell 6:743-750
  37. Muir JM, Hirsh J, Weitz JI, Andrew M, Young E, Shaughnessy SGA 1997 Histomorphometric comparison of the effects of heparin and low-molecular-weight heparin on cancellous bone in rats. Blood 89:3236-3242
  38. Chowdhury MH, Hamada C, Dempster DW 1992 Effects of heparin on osteoclast activity. J Bone Miner Res 7:771-777
  39. Dobigny C, Saffar J-L 1997 H1 and H2 histamine receptors modulate osteoclastic resorption by different pathways: evidence obtained by using receptor antagonists in a rat synchronized resorption model. J Cell Physiol 173:10-18
  40. Fitzpatrick LA, Buzas E, Gagne TJ, Nagy A, Horvath C, Ferencz V, Mester A, Kari B, Ruan M, Falus A, Barsony J 2003 Targeted deletion of histidine decarboxylase gene in mice increases bone formation and protects against ovariectomy-induced bone loss. Proc Natl Acad Sci USA 100:6027-6032
  41. Lesclous P, Guez D, Saffar JL 2002 Short-term prevention of osteoclastic resorption and osteopenia in ovariectomized rats treated with the H2 receptor antagonist cimetidine. Bone 30:131-136
  42. Lesclous P, Saffar JL 1999 Mast cells accumulate in rat bone marrow after ovariectomy. Cells Tissues Organs 164:23-29
  43. Lesclous P, Guez D, Saffar JL 2001 Time-course of mast cell accumulation in rat bone marrow after ovariectomy. Calc Tiss Inter 68:297-303
  44. Cappellen D, Luong-Nguyen N-H, Bongiovanni S, Grenet O, Wanke C, Susa M 2002 Transcriptional program of mouse osteoclast differentiation geverned by the macrophage colony-stimulating factor and the ligand for the receptor activator of NFkappaB. J Biol Chem 277:21971-21982
  45. Johansson C, Roupe G, Lindstedt G, Mellstrom D 1996 Bone density, bone markers and bone radiological features in mastocytosis. Age Ageing 25:1-7
  46. Compston JE 2002 Bone marrow and bone: a functional unit. J Endocrinol 173:387-394
  47. Brumsen C, Papapoulos SE, Lentjes EGWM, Kluin PM, Tamdy NAT 2002 A potential role for the mast cell in the pathogenesis of idiopathic osteoporosis in men. Bone 31:556-561
  48. Zhang X-Y, Kaneshige M, Kamiya Y, Kaneshige K, McPhie P, Cheng S-Y 2002 Differential expression of thyroid hormone receptor isoforms dictates the dominant negative activity of mutant beta receptor. Mol Endocrinol 16:2077-2092)

Título español
Resumen
 Palabras clave
 Bibliografía
 Artículo completo
(exclusivo a suscriptores)
 Autoevaluación
  Tema principal en SIIC Data Bases
 Especialidades

 English title
 Abstract
 Key words
Full text
(exclusivo a suscriptores)

Autor 
Artículos
Correspondencia

Patrocinio y reconocimiento
Imprimir esta página
 
 
 
 
 
 
 
 
 
 
 
 
Está expresamente prohibida la redistribución y la redifusión de todo o parte de los contenidos de la Sociedad Iberoamericana de Información Científica (SIIC) S.A. sin previo y expreso consentimiento de SIIC.
ua31618