Artículos relacionadosArtículos relacionadosArtículos relacionados
Artículos afines de siicsalud publicados en los últimos 4 meses
LA ASPIRINA COMO TRATAMIENTO ADYUVANTE PARA EL CÁNCER DE MAMA
JAMA 331(20):1714-1721
Difundido en siicsalud: 11 jun 2024
BISFOSFONATOS Y SALUD ÓSEA DE PACIENTES CON CÁNCER DE MAMA
Journal of Bone and Mineral Research 39(1):8-16
Difundido en siicsalud: 20 may 2024

EL HEXACLOROBENCENO COMO FACTOR DE RIESGO EN EL CANCER DE MAMA

(especial para SIIC © Derechos reservados)
Las alteraciones en el microambiente estrogénico podrían influir sobre el comportamiento biológico de la glándula mamaria y los tumores, llevando a lesiones preneoplásicas o a un aumento en la malignidad tumoral mamaria.
Autor:
Andrea S. Randi
Columnista Experta de SIIC

Institución:
Universidad de Buenos Aires


Artículos publicados por Andrea S. Randi
Coautores
Carolina Andrea Pontillo* Claudia Marcela Cocca** Noelia Victoria Miret* Clara Ventura*** Lorena Vanesa Zárate**** Florencia Ana Chiappini* Laura Alvarez* Diana Leonor Kleiman de Pisarev***** 
Bióloga, Universidad de Buenos Aires, Buenos Aires, Argentina*
Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina**
Biotecnóloga, Universidad de Buenos Aires, Buenos Aires, Argentina***
Estudiante, Universidad de Buenos Aires, Buenos Aires, Argentina****
Química, Universidad de Buenos Aires, Buenos Aires, Argentina*****
Recepción del artículo
13 de Abril, 2017
Aprobación
9 de Enero, 2018
Primera edición
24 de Enero, 2018
Segunda edición, ampliada y corregida
22 de Agosto, 2024

Resumen
El hexaclorobenceno (HCB) es un contaminante ambiental ampliamente distribuido y un desorganizador endocrino. Su exposición crónica en humanos produce porfiria, síntomas neurológicos, trastornos inmunitarios y disfunciones tiroideas. Es un agonista débil del receptor de hidrocarburos aromáticos (AhR), un factor de transcripción que modula genes relacionados con el metabolismo de xenobióticos, la proliferación, la migración y la invasión. Nuestro objetivo es revisar los efectos del HCB en la glándula mamaria y el cáncer mamario, resumiendo los principales mecanismos de acción. El HCB aumenta el desarrollo tumoral y activa vías de señalización de c-Src/receptor del factor de crecimiento epidérmico (EGFR), mientras que disminuye la fosforilación de tirosina 537/receptor de estrógenos alfa (REalfa), promoviendo un fenotipo de mayor malignidad y metástasis pulmonar en diferentes modelos con animales. En la glándula mamaria de rata genera un microambiente estrogénico por activación del REalfa y las vías de insulina/factores de crecimiento similares a la insulina (IGF). En células de cáncer mamario humanas MCF-7 (REalfa) induce proliferación celular, promoviendo la progresión del ciclo, aumentando la ciclina D1 y la interacción p27/c-Src. En MDA-MB-231 (-REalfa) estimula la migración e invasión, así como la expresión de metaloproteasas y factor de crecimiento transformante beta 1 (TGF-beta 1). Estos estudios indican que las alteraciones en el microambiente estrogénico podrían influir el comportamiento biológico de la glándula mamaria y los tumores, lo que provoca lesiones preneoplásicas o aumento en la malignidad tumoral mamaria. Nuestros hallazgos sugieren que el HCB podría ser un factor de riesgo para la progresión del cáncer de mama humano.

Palabras clave
hexaclorobenceno, desorganizador endocrino, cáncer de mama, receptor de hidrocarburos aromáticos, c-src quinasa, metástasis, factor de crecimiento transformante-beta 1


Artículo completo

(castellano)
Extensión:  +/-9.16 páginas impresas en papel A4
Exclusivo para suscriptores/assinantes

Abstract
Hexachlorobenzene (HCB) is a widespread environmental pollutant and an endocrine disruptor. Chronic exposure of humans to HCB elicits porphyria, neurologic symptoms, immune disorders and thyroid dysfunctions. It is a dioxin-like compound and a weak ligand of the AhR (aryl hydrocarbon receptor), a transcription factor that modulates genes related to detoxification, proliferation, migration and invasion. This study was carried out to revise the results of HCB action on mammary gland and breast cancer, summarizing the main ideas of its mechanism of action. HCB increases tumor development and active c-Src/EGFR (epidermal growth factor receptor) signaling pathways, while reducing tyrosine537-ER-alpha (estrogen receptor-alpha) phosphorylation, and promoting a phenotype with enhanced malignancy and lung metastasis in different animal models. In a rat mammary gland, HCB promotes an estrogenic microenvironment by activation of ER-alpha and Insulin/IGFs (insulin growth factors) pathways. HCB induces cell proliferation, promoting cell cycle progression and enhancing cyclin D1 expression and c-Src/p27 interaction in (ER-alpha) MCF-7 human breast cancer cell line. In (ER-alpha)(-) MDA-MB-231 breast cancer cells, the pesticide enhances cell migration and invasion as well as metalloproteases and TGF-beta1 (transformig growth factor-beta1) expression. In conclusion our current study suggests that alterations in the estrogenic microenvironment may influence the biological behavior of mammary gland or breast tumors, leading to preneoplastic lesions or enhanced malignancy, respectively. Our findings suggest that HCB may be a risk factor for human breast cancer progression.

Key words
hexachlorobenzene, endocrine disruptor, breast cancer, aryl hydrocarbon receptor, c-src kinase, metastasis, transforming growth factor beta 1


Clasificación en siicsalud
Artículos originales > Expertos de Iberoamérica >
página   www.siicsalud.com/des/expertocompleto.php/

Especialidades
Principal: Oncología, Toxicología
Relacionadas: Bioquímica, Endocrinología y Metabolismo, Salud Ambiental, Salud Pública



Comprar este artículo
Extensión: 9.16 páginas impresas en papel A4

file05.gif (1491 bytes) Artículos seleccionados para su compra



Enviar correspondencia a:
Andrea S. Randi, 1121, Paraguay 2155, Buenos Aires, Argentina
Bibliografía del artículo
1. Van den Berg M, Birnbaum L, Bosveld AT y col. Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife. Environ Health Perspect 106:775-792, 1998.
2. Waring RH, Harris RM. Endocrine disrupters-a threat to women's health? Maturitas 68:111-115, 2011.
3. Li Y, Luh CJ, Burns KA y col. Endocrine-disrupting chemicals (EDCs): in vitro mechanism of estrogenic activation and differential effects on ER target genes. Environ Health Perspect 121:459-466, 2013.
4. Inoshita H, Masuyama H, Hiramatsu Y. The different effects of endocrine disrupting chemicals on estrogen receptor-mediated transcription through interaction with coactivator TRAP220 in uterine tissue. J Mol Endocrinol 31:551e561, 2003.
5. Fan W, Yanase T, Morinaga H y col. Herbicide atrazine activates SF-1 by direct affinity and concomitant co-activators recruitments to induce aromatase expression via promoter II. Biochem Biophysical Res Commun 355:1012e1018, 2007.
6. Pelekanou V, Leclercq G. Recent insights into the effect of natural and environmental estrogens on mammary development and carcinogenesis. Review Int J Dev Biol 55:869-878, 2011.
7. Safe S. Clinical correlates of environmental endocrine disruptors. Trends Endocrinol Metab 16:139-144, 2005.
8. Aronson KJ, Miller AB, Woolcott CG y col. Breast adipose tissue concentrations of polychlorinated biphenyls and other organochlorines and breast cancer risk.Cancer Epidemiol Biomarkers Prev 9:55-63, 2000.
9. Calle EE, Frumkin H, Henley SJ, Savitz DA, Thun MJ. Organochlorines and breast cancer risk. CA Cancer J Clin 52:301-9, 2002.
10. Charlier CJ, Albert AI, Zhang L, Dubois NG, Plomteux GJ. Polychlorinated biphenyls contamination in women with breast cancer. Clin Chim Acta 347:177-81, 2004.
11. Charlier CJ, Dejardin MTC. Increased risk of relapse after breast cancer with exposure to organochlorine pollutants. Bull Environ Contam Toxicol 78:1-4, 2007.
12. Ociepa-Zawal M, Rubis B, Wawrzynczak D, Wachowiak R, Trzeciak WH. Accumulation of environmental estrogens in adipose tissue of breast cancer patients. J Environ Sci Health ATox Hazard Subst Environ Eng 45:305-12, 2010.
13. Arrebola JP, Belhassen H, Artacho-Cordón F y col. Risk of female breast cancer and serum concentrations of organochlorine pesticides and polychlorinated biphenyls: a case-control study in Tunisia. Sci Total Environ 520:106-13, 2015.
14. Muñoz de Toro M, Durando M, Beldoménico PM y col. Estrogenic microenvironment generated by organochlorine residues in adipose mammary tissue modulates biomarker expression in ER alpha-positive breast carcinomas. Breast Cancer Res 8:R47, 2006.
15. Arrebola JP, Fernández-Rodríguez M, Artacho-Cordón F y col. Associations of persistent organic pollutants in serum and adipose tissue with breast cancer prognostic markers. Sci Total Environ 566-567:41-9, 2016.
16. Itoh H, Iwasaki M, Hanaoka T y col. Serum organochlorines and breast cancer risk in Japanese women: a case-control study. Cancer Causes Control 20:567-80, 2009.
17. Polder A, Skaare JU, Skjerve E, Løken KB, Eggesbø M. Levels of chlorinated pesticides and polychlorinated biphenyls in Norwegian breast milk (2002-2006), and factors that may predict the level of contamination. Sci Tot Environ 407:4584-4590, 2009.
18. Reed L, Buchner V, Tchounwou PB. Environmental toxicology and health effects associated with hexachlorobenzene exposure. Rev Environ Health 22:213-43, 2007.
19. Van Raaij JA, Frijters CM, Van den Berg KJ. Hexachlorobenzene-induced hypothyroidism. Involvement of different mechanisms by parent compound and metabolite. Biochem Pharmacol 46:1385-1391, 1993.
20. Pegoraro CN, Harner T, Su K, Chiappero MS. Assessing levels of POPs in air over the South Atlantic Ocean off the coast of South America. Sci Total Environ 15:571:172-177, 2016.
21. Bravo N, Hansen S, Økland I y col. Influence of maternal and sociodemographic characteristics on the accumulation of organohalogen compounds in Argentinian women. The EMASAR study. Environ Res 158:759-767, 2017.
22. Guo H, Jin Y, Cheng Y y col. Prenatal exposure to organochlorine pesticides and infant birth weight in China. Chemosphere 110:1-7, 2014.
23. Saoudi A, Fréry N, Zeghnoun A y col. Serum levels of organochlorine pesticides in the French adult population: the French National Nutrition and Health Study (ENNS), 2006-2007. Sci Total Environ 472:1089-1099, 2014.
24. Mrema EJ, Rubino FM, Mandic-Rajcevic S y col. Exposure to priority organochlorine contaminants in the Italian general population. Part 1. Eight priority organochlorinated pesticides in blood serum. Hum Exp Toxicol 32:1323-1339, 2013.
25. Kyriklaki A, Vafeiadi M, Kampouri M y col. Prenatal exposure to persistent organic pollutants in association with offspring neuropsychological development at 4years of age: The Rhea mother-child cohort, Crete, Greece. Environ Int 97:204-211, 2016.
26. Gascon M, Sunyer J, Martínez D y col. Persistent organic pollutants and children's respiratory health: the role of cytokines and inflammatory biomarkers. Environ Int 69:133-40, 2014.
27. Llop S, Murcia M, Alvarez-Pedrerol M y col. Association between exposure to organochlorine compounds and maternal thyroid status: Role of the iodothyronine deiodinase 1 gene. Environ Int 104:83-90, 2017.
28. Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Hexachlorobenzene. U.S.D.O.H.A.H., Services, Atlanta, GA, 2002.
29. Hahn ME, Goldstein JA, Linko P, Gasiewicz TA. Interaction of hexachlorobenzene with the receptor for 2,3,7,8- tetrachlorodibenzo-p-dioxin in vitro and in vivo. Evidence that hexachlorobenzene is a weak Ah receptor agonist. Arch Biochem Biophys 270:344-355, 1989.
30. Park S, Dong B, Matsumura F. Rapid activation of c-Src kinase by dioxin is mediated by the Cdc37-HSP90 complex as part of Ah receptor signaling in MCF10A cells. Biochemistry 46:899-908, 2007.
31. Frame MC. Src in cancer: deregulation and consequences for cell behaviour. Biochim Biophys 1602:114-130, 2002.
32. Matsumura F. How important is the protein phosphorylation pathway in the toxic expression of dioxin-type chemicals? Biochem Pharmacol 48:215-24, 1994.
33. Roman AC, Carvajal-Gonzalez JM, Rico-Leo EM, Fernandez-Salguero PM. Dioxin receptor deficiency impairs angiogenesis by a mechanism involving VEGF-A depletion in the endothelium and transforming growth factor-beta overexpression in the stroma. J Biol Chem 284:25135-25148, 2009.
34. Ingthorsson S, Briem E, Bergthorsson JT, Gudjonsson T. Epithelial plasticity during human breast morphogenesis and cancer progression. J Mammary Gland Biol Neoplasia 21:139-148, 2016.
35. Frye CA, Bo E, Calamandrei G y col. Endocrine disrupters: a review of some sources, effects, and mechanisms of actions on behaviour and neuroendocrine systems. J Neuroendocrinol 24:144-159, 2012.
36. Shanle EK, Xu W. Endocrine disrupting chemicals targeting estrogen receptor signaling: identification and mechanisms of action. Chem Res Toxicol 24:6-19, 2011.
37. Randi AS, Cocca C, Carbone V y col. Hexachlorobenzene is a tumor co-carcinogen and induces alterations in insulin-growth factors signaling pathway in the rat mammary gland. Toxicol Sci 89:83-92, 2006.
38. Frittitta L, Vigneri R, Papa V, Goldfine ID, Grasso G, Trischitta V. Structural and functional studies of insulin receptors in human breast cancer. Breast Cancer Res Treat 25:73-82, 1993.
39. Surmacz E, Guvakova MA, Nolan MK, Nicosia RF, Sciacca L. Type I insulin-like growth factor receptor function in breast cancer. Breast Cancer Res Treat 47:255-267, 1998.
40. Delisle A, Ferraris E, Plante I. Chronic exposure to hexachlorobenzene results in down-regulation of connexin 43 in the breast. Environ Res 143:229-240, 2015.
41. Grek CL, Rhett JM, Bruce JS, Ghatnekar GS, Yeh ES. Connexin 43, breast cancer tumor suppressor: Missed connections? Cancer Lett 374:117-126, 2016.
42. McLachlan E, Shao Q, Wang HL, Langlois S, Laird DW. Connexins act as tumor suppressors in three-dimensional mammary cell organoids by regulating differentiation and angiogenesis. Cancer Res 66:9886-9894, 2006.
43. Carmona FJ, Montemurro F, Kannan S y col. AKT signaling in ERBB2-amplified breast cancer. Pharmacol Ther 158:63-70, 2016.
44. Peña D, Pontillo C, García MA y col. Alterations in c-Src/HER-1 and estrogen receptor signaling pathways in mammary gland and tumors of hexachlorobenzene treated rats. Toxicology 293:68-77, 2012.
45. Varricchio L, Migliaccio A, Castoria G y col. Inhibition of estradiol receptor/Src association and cell growth by an estradiol receptor alpha tyrosine phosphorylated peptide. Mol Cancer Res 5:1213-1221, 2007.
46. Sebastian S, Settleman J, Reshkin SJ, Azzariti A, Bellizzi A, Paradiso A. The complexity of targeting EGFR signaling in cancer: from expression to turnover. Biochim Biophys Acta 1766:120-139, 2006.
47. Murray IA, Patterson AD, Perdew GH. Ah receptor ligands in cancer: friend and foe. Nat Rev Cancer 14:801-814, 2014.
48. Safe S, Lee S, Jin U. Review role of the aryl hydrocarbon receptor in carcinogenesis and potential as a drug target Toxicol Sci 135:1-16, 2013.
49. Hushka LJ, Williams JS, Greenlee WF. Characterization of 2,3,7,8-tetrachlorodibenzofuran- dependent suppression and AH receptor pathway gene expression in the developing mouse mammary gland. Toxicol Appl Pharmacol 152:200-210, 1998.
50. Sternlicht MD. Key stages in mammary gland development: the cues that regulate ductal branching morphogenesis. BCR 8:201, 2006.
51. Miret N, Rico-Leo E, Pontillo C, Zotta E, Fernández-Salguero P, Randi AS. A dioxin-like compound induces hyperplasia and branching morphogenesis in mouse mammary gland, through alterations in TGF-ß1 and aryl hydrocarbon receptor signaling. Toxicol Appl Pharmacol 3334:192-206, 2017.
52. Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer 6:392-401, 2006.
53. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin 65:87-108, 2015.
54. INC. Cáncer de mama en Argentina. Instituto Nacional del Cáncer, Ministerio de Salud, Presidencia de la Nación, Buenos Aires, Argentina (http://www.msal.gov.ar/inc/acerca-del-cancer/cancer-de-mama), 2017.
55. Kao J, Salari K, Bocanegra M y col. Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery. Plos One 4:e6146, 2009.
56. García MA, Peña D, Alvarez L y col. Hexachlorobenzene induces cell proliferation and IGF-I signaling pathway in an estrogen receptor alpha-dependent manner in MCF-7 breast cancer cell line. Toxicol Lett 192:195-205, 2010.
57. Ventura C, Núñez M, Gaido V y col. Hexachlorobenzene alters cell cycle by regulating p27-cyclinE-CDK2 and c-Src-p27 protein complexes. Toxicol Lett 270:72-79, 2017.
58. Castoria G, Giovannelli P, Lombardi M y col. Tyrosine phosphorylation of estradiol receptor by Src regulates its hormone-dependent nuclear export and cell cycle progression in breast cancer cells. Oncogene 31:4868-4877, 2012.
59. Coqueret O. New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment? Trends Cell Biol 13:65-70, 2003.
60. Duffy MJ, Maguire TM, Hill A, Mc Dermott E, O'Higgins N. Metalloproteinases: role in breast carcinogenesis, invasion and metastasis. Rev Breast Cancer Res 2:252-257, 2000.
61. Li H, Qiu Z, Li F, Wang C. The relationship between MMP-2 and MMP-9 expression levels with breast cancer incidence and prognosis. Oncol Lett 14:5865-5870, 2017.
62. Pontillo CA, García MA, Peña D y col. Activation of c-Src/HER1/STAT5b and HER1/ERK1/2 signaling pathways and cell migration by hexachlorobenzene in MDA-MB-231 human breast cancer cell line. Toxicol Sci 120:284-296, 2011.
63. Pontillo CA, Rojas P, Chiappini F y col. Action of hexachlorobenzene on tumor growth and metastasis in different experimental models. Toxicol Appl Pharmacol 268:331-342, 2013.
64. Moses H, Barcellos-Hoff MH. TGF b biology in mammary development and breast cancer. Cold Spring Harb Perspect Biol 3:a003277, 2011.
65. Humbert L, Neel JC, Lebrun JJ. Targeting TGF-beta signaling in human cancer therapy. Trends Cell MolBiol 5:69-107, 2010.
66. Tan AR, Alexe G, Reiss M. Transforming growth factor-beta signaling: emerging stem cell target in metastatic breast cancer? Breast Cancer Res Treat 115:453-495, 2009.
67. Massagué J, Seoane J, Wotton D. Smad transcription factors. Genes Dev 19:2783-2810, 2005.
68. Haarmann-Stemmann T, Bothe H, Abel J. Growth factors, cytokines and their receptors as downstream targets of aryl hydrocarbon receptor (AhR) signaling pathways. Biochem Pharmacol 77:508-520, 2009.
69. Wolff S, Harper PA, Wong JM, Mostert V, Wang Y, Abel J. Cell-specific regulation of human aryl hydrocarbon receptor expression by transforming growth factor ß-1. Mol Pharmacol 59:716-724, 2001.
70. Gómez-Durán A, Carvajal-González JM, Mulero-Navarro S, Santiago-Josefat B, Puga A, Fernández-Salguero PM. Fitting a xenobiotic receptor into cell homeostasis: how the dioxin receptor interacts with TGFbeta signaling. Biochem Pharmacol 77:700-712.
71. Miret N, Pontillo C, Ventura C y col. Hexachlorobenzene modulates the crosstalk between the aryl hydrocarbon receptor and transforming growth factor-ß1 signaling, enhancing human breast cancer cell migration and invasion. Toxicology 366:20-31, 2016.
72. Filho AL, Lopes JM, Schmitt FC. Angiogenesis and breast cancer. J of Oncology pii: 576384, 2010.
73. Koch S, Tugues S, Li X, Gualandi L, Claesson-Welsh L. Signal transduction by vascular endothelial growth factor receptors. Biochem J 437:169-183, 2011.
74. Timoshenko AV, C Chakraborty, GF Wagner, PK Lala. COX-2-mediated stimulation of the lymphangiogenic factor VEGF-C in human breast cancer. British J Cancer 94:1154-1163, 2006.
75. Pontillo C, Español A, Chiappini F y col. Hexachlorobenzene promotes angiogenesis in vivo, in a breast cancer model and neovasculogenesis in vitro, in the human microvascular endothelial cell line HMEC-1. Toxicol Lett 239:53-64, 2015.
76. To Figueras J, Sala M, Otero R y col.Metabolism of hexachlorobenzene in humans: association between serum levels and urinary metabolites in a highly exposed population. Environ Health Perspect 105:78-83, 1997.
77. Chiappini F, Alvarez L, Lux-Lantos V, Randi AS, Kleiman de Pisarev DL. Hexachlorobenzene triggers apoptosis in rat thyroid follicular cells. Toxicol Sci 108:301-310, 2009.
78. Ralph JL, Orgebin-Crist MC, Lareyre JJ, Nelson CC. Disruption of androgen regulation in the prostate by the environmental contaminant hexachlorobenzene. Environ Health Perspect 111:461-466, 2003.


 
 
 
 
 
 
 
 
 
 
 
 
Está expresamente prohibida la redistribución y la redifusión de todo o parte de los contenidos de la Sociedad Iberoamericana de Información Científica (SIIC) S.A. sin previo y expreso consentimiento de SIIC.
Artículos relacionadosMás relacionadosAtículos relacionados
EXPRESIÓN BAJA DE HER2 EN EL CÁNCER DE MAMA TEMPRANO RE+
Anticancer Research 43(10):1-11
Difundido en siicsalud: 20 may 2024
TRATAMIENTOS DE FISIOTERAPIA MÁS EFICACES PARA LA REHABILITACIÓN DEL SÍNDROME DE LA RED AXILAR
Supportive Care in Cancer 31(257):1-14
Difundido en siicsalud: 22 feb 2024
ua31618