EFECTO DEL TABAQUISMO MATERNO SOBRE EL ESTADO OXIDATIVO EN LOS NIÑOS





EFECTO DEL TABAQUISMO MATERNO SOBRE EL ESTADO OXIDATIVO EN LOS NIÑOS

(especial para SIIC © Derechos reservados)
La exposición a los componentes del cigarrillo durante el embarazo y la vida posnatal temprana es, quizá, la exposición ambiental ubicua más peligrosa y evitable. Asimismo, se demostró que el humo del cigarrillo tiene consecuencias negativas sobre la salud de los niños, en especial, durante el primer año de vida.
yilmaz9_40416.png Autor:
Gonca Yilmaz
Columnista Experta de SIIC

Institución:
Dr. Sami Ulus Training Hospital


Artículos publicados por Gonca Yilmaz
Coautores
Nilgun Demirli Caylan* Can Demir Karacan* 
MD, Dr. Sami Ulus Training Hospital, Ankara, Turkey*

Resumen
El hábito de fumar es una de las más importantes causas evitables de muerte. Globalmente, más de mil millones de personas son fumadoras, dejando vulnerable al resto de la población no fumadora expuesta al humo de segunda mano (HSM). La exposición a los componentes del cigarrillo durante el embarazo y la vida posnatal temprana es, quizá, la exposición ambiental ubicua más peligrosa y evitable. Asimismo, se demostró que el humo del cigarrillo tiene consecuencias negativas sobre la salud de los niños, en especial, durante el primer año de vida. El daño oxidativo es un cambio en el equilibrio entre los procesos prooxidantes y el sistema de defensa antioxidante a favor de los prooxidantes. Esta aparece en condiciones de producción aumentada de radicales libres, en la insuficiencia de los sistemas antioxidantes o en ambos. Se ha sugerido que el aumento del daño oxidativo desempeña un papel importante en la patogenia de varias enfermedades relacionadas con el tabaquismo. El humo del cigarrillo contiene grandes cantidades de radicales libres que muchos de ellos son oxidantes y prooxidantes. El tipo de nutrición en niños expuestos al HSM es muy importante para protegerlos del daño oxidativo. El propósito de esta revisión es efectuar una revisión de los estudios que han tratado la relación entre el daño oxidativo y el tipo de nutrición en la infancia y el daño oxidativo causado por la exposición al HSM durante los períodos prenatal, posnatal y en la infancia.

Palabras clave
daño oxidativo, antioxidantes, humo de segunda mano, tabaquismo, leche materna


Artículo completo

(castellano)
Extensión:  +/-10.34 páginas impresas en papel A4
Exclusivo para suscriptores/assinantes

Abstract
Tobacco smoking is one of the most important preventable causes of death. Globally, more than 1 billion people smoke, leaving much of the world's non-smoking population vulnerable to second-hand smoke (SHS) exposure. Exposure to tobacco constituents during pregnancy and early postnatal life is perhaps the most ubiquitous avoidable hazardous environmental exposure. Additionally, tobacco smoke has been shown to have negative consequences on infant health, especially during the first year of life. Oxidative stress is a change in balance between pro-oxidant processes and antioxidant defense system in favor of pro-oxidants. It appears in conditions of increased production of free radicals, insufficiency of antioxidant systems or both. It has been suggested that increased oxidative stress plays a major role in the pathogenesis of several smoking-related diseases. Tobacco smoke contains large quantities of free radicals, many of which are oxidants and pro-oxidants. The type of nutrition in infants who are exposed to SHS is very important to protect them from oxidative stress. The purpose of this paper is to review the studies dealing with the relation between oxidative stress and the type of nutrition in infancy and oxidative stress caused by SHS exposure during prenatal, neonatal, postnatal and childhood periods.

Key words
tobacco smoke, second-hand smoke, antioxidants, oxidative stress, breast-milk


Full text
(english)
para suscriptores/ assinantes

Clasificación en siicsalud
Artículos originales > Expertos del Mundo >
página   www.siicsalud.com/des/expertocompleto.php/

Especialidades
Principal: Pediatría, Salud Pública
Relacionadas: Atención Primaria, Medicina Familiar, Toxicología



Comprar este artículo
Extensión: 10.34 páginas impresas en papel A4

file05.gif (1491 bytes) Artículos seleccionados para su compra



Enviar correspondencia a:
Gonca Yilmaz, Dr.Sami Ulus Training and Research Hospital, Department of Social Pediatrics, Dr. Sami Ulus Training and Research Hospital, Department of Social Pediatrics, Babur Cad. No: 44 Alt, Ankara, Turquía
Bibliografía del artículo
1. WHO report on the global tobacco epidemic: Warning about the dangers of tobacco. World Health Organization 2011. Available at: http://www.who.int/tobacco/global_report/2011/en/index.html. Accessed January 2012.
2. WHO report on the global tobacco epidemic: Implementing smoke-free environments. Geneva, World Health Organization, 2009. Available at: http://www.who.int/tobacco/mpower/2009/gtcr_download/en/index.html Accessed January 2012.
3. Yilmaz G, Hizli S, Karacan C, Yurdakök K, Coskun T, Dilmen U. Effects of passive smoking on growth and infection rates of breast-fed and non-breastfed infants. Pediatr Int 51:352-358, 2009.
4. Bajanowski T, Brinkmann B, Mitchell EA, et al. Nicotine and cotinine in infants dying from sudden infant death syndrome. Int J Legal Med 122:23-8, 2008.
5. Mennella JA, Yourshaw LM, Morgan LK. Breastfeeding and smoking: short-term effects on infant feeding and sleep. Pediatrics 120(3):497-502, 2007.
6. Chang JS, Selvin S, Metayer C, Crouse V, Golembesky A, Buffler PA. Parental smoking and the risk of childhood leukemia. Am J Epidemiol 163(12):1091-1100, 2006.
7. Office on Smoking and Health (US). The health consequences of involuntary exposure to tobacco smoke: A report of the Surgeon General. Atlanta (GA): Centers for Disease Control and Prevention (US), 2006.
8. Reddy R, Yao JK. Role of oxidative stress in schizophrenia. In: Basu TK, ed. Antioxidants in Human Health and Disease. New York: CABI Publishing, pp. 355-356, 1999.
9. Cross CE, Traber M, Eiserich J, Van der Vliet A. Micronutrient antioxidants and smoking. Br Med Bull 55:691-704, 1999.
10. Pryor WA, Stone K. Oxidants in cigarette smoke. Radicals, hydrogen peroxide, peroxynitrate, and peroxynitrite. Ann N Y Acad Sci 686:12-27, 1993.
11. Polidori MC, Mecocci P, Stahl W, Sies H. Cigarette smoking cessation increases plasma levels of several antioxidant micronutrients and improves resistance towards oxidative challenge. Br J Nutr 90(1):147-150, 2003.
12. Walmsley CM, Bates CJ, Prentice A, Cole TJ. Relationship between cigarette smoking and nutrient intakes and blood status indices of older people living in the UK: further analysis of data from the National Diet and Nutrition Survey of people aged 65 years and over, 1994/95. Public Health Nutr 2(2):199-208, 1999.
13. Halliwell B. Antioxidants in human health and disease. Annu Rev Nutr 16:33-50, 1996.
14. Halliwell B. Vitamin C: antioxidant or pro-oxidant in vivo? Free Radic Res 25(5):439-454, 1996.
15. Bendich A. Role of antioxidants in the maintenance of immune functions. In: Frei B, ed. Natural antioxidants in human health and disease. New York, Academic Press, pp. 447-67, 1994.
16. Subar AF, Harlan LC, Mattson ME. Food and nutrient intake differences between smokers and non-smokers in the US. Am J Public Health 80(11):1323-9, 1990.
17. Faruque MDO, Khan MR, Rahman MM, Ahmed F. Relationship between smoking and antioxidant nutrient status. Br J Nutr 73(4):625-32, 1995.
18. Northrop-Clewes CA, Thurnham DI. Monitoring micronutrients in cigarette smokers. Clin Chim Acta 377:14-38, 2007.
19. Alberg A. The influence of cigarette smoking on circulating concentrations of antioxidant micronutrients. Toxicology 180(2):121-37, 2002.
20. Loscalzo J. The oxidant stress of hyperhomocyst(e)inemia. J Clin Invest 98(1):5-7, 1996.
21. Matsui EC, Matsui W. Higher serum folate levels are associated with a lower risk of atopy and wheeze. J Allergy Clin Immunolog 123(6):1253-9, 2009.
22. Chopra M, O'Neill ME, Keogh N, Wortley G, Southon S, Thurnham D. Influence of increased fruit and vegetable intake on plasma and lipoprotein carotenoids and LDL oxidation in smokers and nonsmokers. Clin Chem 46(11):1818-29, 2000.
23. Collins AR. Assays for oxidative stress and antioxidant status: applications to research into the biological effectiveness of polyphenols. Am J Clin Nutr 81(1 Suppl):261S-267S, 2005.
24. Griffiths HR, Moller R, Bartosz G, et al. Biomarkers. Mol Aspects Med 23(1-3):101-208, 2002.
25. Orhon FS, Ulukol B, Kahya D, Cengiz B, Baskan S, Tezcan S. The influence of maternal smoking on maternal and newborn oxidant and antioxidant status. Eur J Pediatr 168(8):975-81, 2009.
26. Bolisetty S, Naidoo D, Lui K, et al. Postnatal changes in maternal and neonatal plasma antioxidant vitamins and the influence of smoking. Arch Dis Child Fetal Neonatal Ed 86(1):F36-40, 2002.
27. Fayol L, Gulian JM, Dalmasso C, Calaf R, Simeoni U, Millet V. Antioxidant status of neonates exposed in utero to tobacco smoke. Biol Neonate 87(2):121-6, 2005.
28. Ermis B, Ors R, Yildirim A, Tastekin A, Kardas F, Akcay F. Influence of smoking on maternal and neonatal serum malondialdehyde, superoxide dismutase, and glutathione peroxidase levels. Ann Clin Lab Sci 34(4):405-9, 2004.
29. Chelchowska M, Ambroszkiewicz J, Gajewska J, Laskowska-Klita T, Leibschang J. The effect of tobacco smoking during pregnancy on plasma oxidant and antioxidant status in mother and newborn. Eur J Obstet Gynecol Reprod Biol 155(2):132-6, 2011.
30. Schwarz KB, Cox JM, Sharma S, et al. Prooxidant effects of maternal smoking and formula in newborn infants. J Pediatr Gastroenterol Nutr 24(1):68-74, 1997.
31. Argüelles S, Machado MJ, Ayala A, Machado A, Hervias B. Correlation between circulating biomarkers of oxidative stress of maternal and umbilical cord blood at birth. Free Radic Res 40(6):565-70, 2006.
32. Aycicek A, Ipek A. Maternal active or passive smoking causes oxidative stress in cord blood. Eur J Pediatr 167(1):81-5, 2008.
33. Aycicek A, Erel O, Kocyigit A. Increased oxidative stress in infants exposed to passive smoking. Eur J Pediatr 164(12):775-8, 2005.
34. Vogt Isaksen C. Maternal smoking, intrauterine growth restriction, and placental apoptosis. Pediatr Dev Pathol 7(5):433-42, 2004.
35. Zdravkovic T, Genbacev O, Mcmaster MT, Fisher SJ. The adverse effects of maternal smoking on the human placenta: a review. Placenta 26:S81-6, 2005.
36. Gitto E, Reiter RJ, Karbownik M, et al. Causes of oxidative stress in the pre-and perinatal period. Biol Neonate 81(3):146-57, 2002.
37. Kiely M, Cogan P, Kearney PJ, Morrissey PA. Relationship between smoking, dietary intakes and plasma levels of vitamin E and ß-carotene in matched maternal-cord pairs. Int J Vitam Nutr Res 69(4):262-7, 1999.
38. Ortega RM, López-Sobaler AM, Martinez RM, Andrès P, Quintas ME. Influence of smoking on vitamin E status during the third trimester of pregnancy and on breast-milk tocopherol concentrations in Spanish women. Am J Clin Nutr 68(3):662-7, 1998.
39. De Barros Silva SS, Rondó PH, Erzinger GS. Beta-carotene concentrations in maternal and cord blood of smokers and non-smokers. Early Hum Dev 81(4):313-7, 2005.
40. Cogswell ME, Weisberg P, Spong C. Cigarette smoking, alcohol use and adverse pregnancy outcomes: implications for micronutrient supplementation. J Nutr 133(5 Suppl 2):1722S-1731S, 2003.
41. Aycicek A, Varma M, Ahmet K, Abdurrahim K, Erel O. Maternal active or passive smoking causes oxidative stress in placental tissue. Eur J Pediatr 170(5):645-51, 2011.
42. Sun Y, Oberley LW, Li Y. A simple method for clinical assay of superoxide dismutase. Clin Chem 34(3):497-500, 1988.
43. Nielsen F, Mikkelsen BB, Nielsen JB, Andersen HR, Grandjean P. Plasma malondialdehyde as biomarker for oxidative stress: reference interval and effects of life-style factors. Clin Chem 43(7):1209-14, 1997.
44. Rogers MS, Wang W, Mongelli M, Pang CP, Duley JA, Chang AM. Lipid peroxidation in cord blood at birth: a marker of fetal hypoxia during labour. Gynecol Obstet Invest 44(4):229-33, 1997.
45. Harlap S, Davies AM. Infant admissions to the hospital and maternal smoking. Lancet 1(7857):529-32, 1974.
46. Noakes PS, Thomas R, Lane C, et al. Association of maternal smoking with increased infant oxidative stress at 3 months of age. Thorax 62(8):714-7, 2007.
47. Yilmaz G, Agras PI, Hizli S, et al. The effect of passive smoking and breast feeding on serum antioxidant vitamin (A, C, E) levels in infants. Acta Paediatr 98(3):531-6, 2009.
48. Strauss RS. Environmental tobacco smoke and serum vitamin C levels in children. Pediatrics 107(3):540-2, 2001.
49. Preston AM, Rodriguez C, Rivera CE, Sahai H. Influence of environmental tobacco smoke on vitamin C status in children. Am J Clin Nutr 77(1):167-72, 2003.
50. Jendryczko A, Szpyrka G, Gruszczynski J, Kozowicz M. Cigarette smoke exposure of school children: effect of passive smoking and vitamin E supplementation on blood antioxidant status. Neoplasma 40(3):199-203, 1993.
51. Yildirim F, Sermetow K, Aycicek A, Kocyigit A, Erel O. Increased oxidative stress in preschool children exposed to passive smoking. J Pediatr (Rio J) 87(6):523-8, 2011.
52. Kosecik M, Erel O, Sevinc E, Selek S. Increased oxidative stress in children exposed to passive smoking. Int J Cardiol 100(1):61-4, 2005.
53. Friel JK, Martin SM, Langdon M, Herzberg GR, Buettner GR. Milk from mothers of both premature and full-term infants provides better antioxidant protection than does infant formula. Pediatr Res 51(5):612-8, 2002.
54. Aycicek A, Erel O, Kocyigit A, Selek S, Demirkol MR. Breast milk provides better antioxidant power than does formula. Nutrition 22(6):616-9, 2006.
55. Buescher ES, McIlheran SM. Colostral antioxidants: separation and characterization of two activities in human colostrum. J Pediatr Gastroenterol Nutr 14(1):47-56, 1992.
56. Schweigert FJ, Bathe K, Chen F, Büscher U, Dudenhausen JW. Effect of the stage of lactation in humans on carotenoid levels in milk, blood plasma and plasma lipoprotein fractions. Eur J Nutr 43(1):39-44, 2004.
57. L'Abbe MR, Friel JK. Superoxide dismutase and glutathione peroxidase content of human milk from mothers of premature and full-term infants during the first 3 months of lactation. J Pediatr Gastroenterol Nutr 31(3):270-4, 2000.
58. Alberti-Fidanza A, Burini G, Perriello G. Total antioxidant capacity of colostrum, and transitional and mature human milk. J Matern Fetal Neonatal Med 11(4):275-9, 2002.
59. Quiles JL, Ochoa JJ, Ramirez-Tortosa MC, et al. Coenzyme Q concentration and total antioxidant capacity of human milk at different stages of lactation in mothers of preterm and full-term infants. Free Radic Res 40(2):199-206, 2006.
60. Szlagatys-Sidorkiewicz A, Zagierski M, Jankowska A, et al. Longitudinal study of vitamins A, E and lipid oxidative damage in human milk throughout lactation. Early Hum Dev 2011 (Epub ahead of print).
61. Wasowicz W, Gromadzinska J, Szram K, Rydzynski K, Cieslak J, Pietrzak Z. Selenium, zinc, and copper concentrations in the blood and milk of lactating women. Biol Trace Elem Res 79(3):221-33, 2001.
62. Macias C, Schweigert FJ. Changes in the concentration of carotenoids, vitamin A, alpha-tocopherol and total lipids in human milk throughout early lactation. Ann Nutr Metab 45(2):82-5, 2001.
63. Campos JM, Paixão JA, Ferraz C. Fat-soluble vitamins in human lactation. Int J Vitam Nutr Res 77(5):303-10, 2007.
64. Szlagatys-Sidorkiewicz A, Zagierski M, Renke J, Korzon M. Total antioxidative status in colostrum. The influence of maternal smoking. Med Wieku Rozwoj 9(4):621-8, 2005.
65. Zagierski M, Szlagatys-Sidorkiewicz A, Jankowska A, Krzykowski G, Korzon M, Kaminska B. Maternal smoking decreases antioxidative status of human breast milk. J Perinatol 2011 (Epub ahead of print).
66. Ermis B, Yildirim A, Ors R, Tastekin A, Ozkan B, Akcay F. Influence of smoking on serum and milk malondialdehyde, superoxide dismutase, glutathione peroxidase, and antioxidant potential levels in mothers at the postpartum seventh day. Biol Trace Elem Res 105(1-3):27-36, 2005.
67. Ortega RM, López-Sobaler AM, Quintas ME, Martínez RM, Andrés P. The influence of smoking on vitamin C status during the third trimester of pregnancy and on vitamin C levels in maternal milk. J Am Coll Nutr 17(4):379-84, 1998.
68. Vohr BR, Poindexter BB, Dusick AM, et al. Beneficial effects of breast milk in the neonatal intensive care unit on the development and outcome of extremely low birth weight infants at 18 months of age. Pediatrics 118(1):e115-23, 2006.
69. Koletzko B, Rodriguez-Palmero M, Demmelmair H, Fidler N, Jensen R, Sauerwald T. Physiological aspects of breast milk lipids. Early Hum Dev 65(Suppl.):S3-S18, 2001.
70. Anderson GH. Human milk feeding. Pediatr Clin North Am 32(2):335-53, 1985.
71. Goldman AS, Goldblum RM, Hanson LA. Anti-inflammatory systems in human milk. Adv Exp Med Biol 262:69-76, 1990.
72. Emmett P, Rogers IS. Properties of human milk and their relationship with maternal nutrition. Early Hum Dev 49(Suppl):S7-28, 1997.
73. Ledo A, Arduini A, Asensi MA, et al. Human milk enhances antioxidant defenses against hydroxyl radical aggression in preterm infants. 89(1):210-5, 2009.

 
 
 
 
 
 
 
 
 
 
 
 
Está expresamente prohibida la redistribución y la redifusión de todo o parte de los contenidos de la Sociedad Iberoamericana de Información Científica (SIIC) S.A. sin previo y expreso consentimiento de SIIC.
ua31618