LA DOPAMINA PUEDE AFECTAR LA VIABILIDAD CELULAR POR DESEQUILIBRIO REDOX





LA DOPAMINA PUEDE AFECTAR LA VIABILIDAD CELULAR POR DESEQUILIBRIO REDOX

(especial para SIIC © Derechos reservados)
La neurodegeneración de las neuronas dopaminérgicas puede estar ocasionada por una alteración en el potencial redox intracelular desencadenada por un aumento de la DA citosólica, ya sea por alteraciones en su catabolismo o por algún defecto en su internalización en vesículas.
Autor:
Santiago Ambrosio Viale
Columnista Experto de SIIC

Institución:
Universidad de Barcelona


Artículos publicados por Santiago Ambrosio Viale
Coautores
Santiago Ambrosio Viale*  Pol Giménez Xavier**  Cristina Gómez Santos***  Ester Castaño****  Roser Francisco*****  Jordi Boada******  Mercedes Unzeta*******  Elisenda Sanz******** 
Profesor Universidad, Universidad de Barcelona, Profesor Titular*
Biólogo, Departamento Ciencias Fisiológicas II, Universidad de Barcelona, Becario**
Bióloga, Centro Investigaciones Enfermedades Neurodegenerativas, Barcelona, Técnico Superior***
Bióloga, Servicios Científico-técnicos, Universidad de Barcelona, Técnico Superior****
Bióloga, Departamento Ciencias Fisiológicas II, Universidad de Barcelona, Becaria*****
Farmacéutico, Departamento Ciencias Fisiológicas II, Universidad de Barcelona, Técnico Superior******
Profesora Titular, Departamento Bioquímica y Biología Molecular, Universidad Autónoma de Barcelona, Vicerrectora*******
Bióloga, Departamento Bioquímica y Biología Molecular, Universidad Autónoma de Barcelona, Becaria********
Aprobación
27 de Julio, 2006
Primera edición
16 de Marzo, 2007
Segunda edición, ampliada y corregida
7 de Junio, 2021

Artículo completo

(castellano)
Extensión:  +/-4.31 páginas impresas en papel A4
Exclusivo para suscriptores/assinantes

Clasificación en siicsalud
Artículos originales > Expertos de Iberoamérica >
página   www.siicsalud.com/des/expertocompleto.php/

Especialidades
Principal: Bioquímica, Neurología
Relacionadas: Anatomía Patológica, Diagnóstico por Laboratorio, Salud Mental



Comprar este artículo
Extensión: 4.31 páginas impresas en papel A4

file05.gif (1491 bytes) Artículos seleccionados para su compra



Enviar correspondencia a:
S Ambrosio, Department de Cièncias Fisiològiques II, IDIBELL, Universitat de Barcelona, E-08907, C/Feixa Llarga s/n, Barcelona, España
Bibliografía del artículo
1. Adams JD, Klaidman LK, Chang ML, Yang J. Brain oxidative stress-analytical chemistry and thermodynamics of glutathione and NADPH. Curr Top Med Chem 2001; 1:473-482.2. Anglade P, Vyas S, Javoy-Agid F, Herrero MT, Michel PP, Márquez J, Mouatt-Prigent A, Ruberg M, Hirsch EC, Agid Y. Apoptosis and autophagy in nigral neurons of patients with Parkinson’s disease. Histol Histopathol 1997; 12:25-31.3. Aroca P, Solano F, García Borrón JG, Lozano JA. A new spectrophotometric assay for dopachrome tautomerase, J Biochem Biophys Meth 1990; 21:35-46.4. Barron JT, Sasse MF, Nair A. Effect of angiotensin II on energetics, glucose metabolism and cytosolic NADH/NAD and NADPH/NADP redox in vascular smooth muscle. Mol Cell Biochem 2004; 262:91-99.5. Barzilai A, Melamed E, Shirvan A. Is there a rationale for neuroprotection against dopamine toxicity in Parkinson's disease Cell Mol Neurobiol 2001; 21:215-235.6. Ben-Shachar D, Zuk R, Gazawi H, Ljubuncic P. Dopamine toxicity involves mitochondria complex I inhibition: implications to dopamine-related neuropsychiatric disorders. Biochem Pharmacol 2004; 67:1965-1974.7. Berg D, Youdim MBH, Riederer P. Redox imbalance. Cell Tissue Res 2004; 318:201-213.8. Berman SB, Hastings TG. Dopamine oxidation alters mitochondria respiration and induces permeability transition in brain mitochondria: implications for Parkinson's disease. J Neurochem 1999; 73:1127-1137.9. Berridge MV, Tan AS. Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Arch Biochem Biophys 1993; 303:474-482.10. Berry MN. The function of energy-dependent redox reactions in cell metabolism. FEBS Lett 1980; 117S:K106-K120.11. Blum D, Torch S, Lamberg N, Nissou MF, Benabid AL, Sadoul R, Verna JM. Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson's disease. Progr Neurobiol 2001; 65:135-172.12. Boada J, Cutillas B, Roig T, Bermúdez J, Ambrosio S. MPP+-induced dysfunction is potentiated by dopamine. Biochem Biophys Res Commun 2000; 268:916-920.13. Boya P, González-Polo RA, Casares N, Perfettini JL, Dessen P, Larochette N, Métivier D, Meley D, Souquere S, Yoshimori T, Pierron G, Codogno P, Kroemer G. Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol 2005; 25:1025-1040.14. Clement MV, Long LH, Ramalingam J, Halliwell B. The cytotoxicity of dopamine may be an artefact of cell culture. J Neurochem 2002; 81:414-421.15. Einsenhofer G, Kopin IJ, Goldstein DS. Catecholamine metabolism: a contemporary view with implications for physiology and medicine. Pharmacol Rev 2004; 56:331-349.16. Fang G, Tang X, Zhou X. Preparation of poly(malachite green) modified electrode and the determination of dopamine and ascorbic acid. Anal Sci 1999; 15:41-46.17. Fedorow H, Tribl F, Halliday G, Gerlach M, Riederer P, Double KL. Neuromelanin in human dopamine neurons: comparison with peripheral melanins and relevance to Parkinson's disease. Progr Neurobiol 2005; 75:109-124.18. Fowler CJ, Tipton KF. Concentration dependence of the oxidation of tyramine by the two forms of rat liver mitochondrial monoamine oxidase. Biochem Pharmacol 1981; 30:3329-3332.19. Gluck MR, Zeevalk GD. Inhibition of brain mitochondria respiration by dopamine and its metabolites: implications for Parkinson's disease and catecholamines-associated diseases. J Neurochem 2004; 91:788-795.20. Gómez N, Unzeta M, Tipton K, Anderson M, O'Carroll AM. Determination of monoamine oxidase concentrations in rat liver by inhibitor binding. Biochem Pharmacol 1986; 35:4467-4472.21. Gómez-Santos C, Ferrer I, Santidrián AF, Barrachina M, Gil J, Ambrosio S. Dopamine induces autophagic cell death and -synuclein increase in human neuroblastoma SH-SY5Y cells. J Neurosci Res 2003; 73:341-350.22. Gómez-Santos C, Barrachina M, Giménez-Xavier P, Dalfó E, Ferrer I, Ambrosio S. Induction of C/EBPß and GADD153 expression by dopamine in human neuroblastoma cells. Brain Res Bull 2005; 65:87-95.23. Haque ME, Asanuma M, Higashi Y, Miyazaki I, Tanaka KI, Ogawa N. Apoptosis-inducing neurotoxicity of dopamine and its metabolites via reactive generation in neuroblastoma cells. Biochem Biophys Acta 2003; 1619:39-52.24. Hirrlinger J, Schulz JB, Dringen R. Effects of dopamine on the glutathione metabolism of cultured astroglial cells: implications for Parkinson's disease. J Neurochem 2002; 82:458-467.25. Hoyt KR, Reynolds IJ, Hasting TG. Mechanisms of dopamine-induced cell death in cultured rat forebrain neurons: interactions with and differences from glutamate-induced cell death. Exp Neurol 1997; 143:269-281.26. Izumi Y, Sawada H, Yamamoto N, Kume T, Katsuki H, Shimohama S, Akaike A. Iron accelerates the conversion of dopamine-oxidized intermediates into melanin and provides protection in SH-SY5Y cells. J Neurosci Res 2005; 82:126-137.27. Jiang H, Jiang Q, Feng J. Parkin increases dopamine uptake by enhancing the cell surface expression of dopamine transporter. J Biol Chem 2004; 279:54380-54386.28. Jones DC, Gunasekar PG, Borowitz JL, Isorm GE. Dopamine-induced apoptosis is mediated by oxidative stress and is enhanced by cyanide in differentiated PC12 cells. J Neurochem 2000; 74:2296-2304.29. Junn E, Mouradian MM. Apoptotic signaling in dopamine-induced cell death: the role of oxidative stress, p38 mitogen-activated protein kinase, cytochrome c and caspases. J Neurochem 2001; 78:374-383.30. Kirsch M, De Groot H. NAD(P)H, a directly operating antioxidant FASEB J 2001; 15:1569-1574.31. Kopin IJ. Neurotransmitters and disorders of the basal ganglia. In: Siegel GJ, Agranoff BW, Albers RW, Molinoff PB (eds.). Basic Neurochemistry, Raven Press, New York, 1993, p. 903.32. Lai CT, Yu PH. Dopamine and l-ß-3,4-dihydroxyphenylalanine hydrochloride (l-dopa)-induced cytotoxicity towards catecholaminergic neuroblastoma SH-SY5Y cells. Biochem Pharmacol 1997; 53:363-372.33. Lai CT, Yu PH. R(-)-deprenyl potentiates dopamine-induced cytotoxicity toward catecholaminergic neuroblastoma SH-SY5Y cells. Toxicol Appl Pharmacol 1997; 142:186-191.34. LaVoie MJ, Hastings TG. Dopamine quinone formation and protein modification associated with the striatal neurotoxicity of methamphetamine: evidence against a role for extracellular dopamine. J Neurosci 1999; 19:1484-1491.35. Lee CS, Han JH, Jang YY, Song JH, Han ES. Differential effect of catecholamines and MPP+ on membrane permeability in brain mitochondria and cell viability in PC12 cells. Neurochem Int 2002; 40:361-369.36. Lode HN, Bruchelt G, Seitz G, Gebhardt S, Gekeler V, Niethammer D, Beck J. Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis of monoamine transporters in neuroblastoma cell lines: correlations to meta-iodobenzylguanidine (MIBG) uptake and tyrosine hydroxylase gene expression. Eur J Cancer 1995; 31A:586-590.37. Luo Y, Kokkonene GC, Hattori A, Chrest FJ, Roth GS. Dopamine stimulates redox-tyrosine kinase signaling and p38 MAPK in activation of astrocytic C6-D2L cells. Brain Res 1999; 850:21-38.38. Mclaughlin BA, Nelson D, Erecinska M, Chesselet M. Toxicity of dopamine to striatal neurons in vitro and potentiation of cell death by a mitochondria inhibitor. J Neurochem 1990; 70:428-435.39. Mena MA, García de Yébenes J, Dwark A, Fahn S, N Latov, Herbert J, Flaster E, Slonim D. Biochemical properties of monoamine-rich human neuroblastoma cells. Brain Res 1989; 486:286-296.40. Michel PP, Hefti F. Toxicity of 6-hydroxydopamine and dopamine for dopaminergic neurons in culture. J Neurosci Res 1990; 26:428-435.41. Morikawa N, Nakagawa-Hattori Y, Mizuno Y. Effect of dopamine, dimethoxyphenylethylamine, papaverine, and related compounds on mitochondria respiration and complex I activity. J Neurochem 1996; 66:1174-1181.42. Offen D, Gorodin S, Melamed E, Hanania J, Malik Z. Dopamine-melanin is actively phagocytized by PC12 cells and cerebellar granular cells: possible implications for the etiology of Parkinson's disease. Neurosci Lett 1999; 260:101-104.43. Pålham S, Ruusala AI, Abrahamsson L, Mattson MEK, Esscher T. Retinoic acid-induced differentiation of cultured human neuroblastoma cells: a comparison with phorbol ester-induced differentiation. Cell Different 1984; 14:135-144.44. Pedrosa R, Soares da Silva P. Oxidative and non-oxidative mechanisms of neuronal cell death and apoptosis by L-3,4-dihydroxyphenylalanine (l-DOPA) and dopamine. Br J Pharmacol 2002; 137:1305-1313.45. Pifl C, Zezula J, Spittler A, Kattinger A, Reither H, Caron MG, Hornykiewicz O. Antiproliferative action of dopamine and norepinephrine in neuroblastoma cells expressing the human dopamine transporter. FASEB J 2001; 15:1607-1610.46. Porat S, Simantov R. Bcl-e and p53: role in dopamine-induced apoptosis and differentiation. Ann NY Acad Sci 1999; 893:372-375.47. Richards ML, Sadee W. Human neuroblastoma cell lines as models of catechol uptake. Brain Res 1986; 384:132-137.48. Santiago M, Machado A, Cano J. Nigral and striatal comparative study of the neurotoxic action of 1-methyl-4-phenylpyridinium ion: involvement of dopamine uptake system. J Neurochem 1996; 66:1182-1190.49. Seitz G, Stegmann HB, Jager HH, Schlude HM, Wolburg H, Roginsky VA, Niethammer D. Neuroblastoma cells expressing the noradrenaline transporter are destroyed more selectively by 6-fluorodopamine than by 6-hydroxydopamine. J Neurochem 2000; 75:511-520.50. Senft AP, Dalton TP, Shertzer HG. Determining glutathione and glutathione disulfide using the fluorescence probe o-phthalaldeyde. Anal Biochem 2000; 280:80-86.51. Shen XM, Dryhurst G. Further insights into the influence of l-cysteine on the oxidation chemistry of dopamine: reaction pathways of potential relevance to Parkinson's disease. Chem Res Toxicol 1996; 9:751-763.52. Sofic E, Denisova N, Youdim K, Vatrejak-Velagic V, De Filippo C, Mehmedagic A, Causevic A, Cao G, Joseph JA, Prior RL. Antioxidant and pro-oxidant capacity of catecholamines and related compounds. J Neural Transm 2001; 108:541-557.53. Spencer JPE, Jenner A, Aruoma OA, Evans PJ, Kaur H, Dexter DT, Jenner P, Lees AJ, Marsden DC, Halliwell B. Intense oxidative DNA damage promoted by l-dopa and its metabolites. Implications for neurodegenerative disease. FEBS Lett 1994; 353:246-250.54. Sulzer D, Bogulavsky J, Larsen KE, Behr G, Karatekin E, Kleinman MH, Turro N, Krantz D, Edwards RH, Greene LA, Zecca L. Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles. Proc Natl Acad Sci USA 2000; 97:11869-11874.55. Weinreb O, Mandel S, Youdim MBH. cDNA gene expression profile homology of antioxidants and their antiapoptotic and proapoptotic activities in human neuroblastoma cells. FASEB J 2003; 10.1096/fj.02-0712fje.56. Weingarten P, Bermak J, Zhou QY. Evidence for non-oxidative dopamine cytotoxicity: potent activation of NF-kappa B and lack of protection by anti-oxidants. J Neurochem 2001; 76:1794-804.57. West AR, Floresco SB, Charara A, Rosenkranz JA. Electrophysiological interaction between striatal glutamatergic and dopaminergic systems. Ann NY Acad Sci 2003; 1003:53-74.58. Yi H, Maruyama W, Akao Y, Takahashi T, Iwasa K, Youdim MBH, Naoi M. N-Propargylamine protects SH-SY5Y cells from apoptosis induced by an endogenous neurotoxin, N-methyl(R)salsolinol, through stabilization of mitochondria membrane and induction of anti-apoptotic Bcl-2. J Neural Transm 2005; 10.1007/s00702-005-0299-z.59. Zecca L, Stroppolo A, Gatti A, Tampellini D, Toscani M, Gallorini M, Giaveri G, Arosio P, Santambrogio P, Fariello RG, Karatekin E, Kleinman MH, Turro N, Hornykiewicz O, Zucca FA. The role of iron and copper molecules in the neuronal vulnerability of locus coeruleus and substantia nigra during aging. Proc Natl Acad Sci USA 2004; 26:9843-9848.60. Zilkha-Falb R, Ziv I, Nardi N, Offen D, Melamed E, Barzilai A. Monoamine-induced apoptotic neuronal cell death. Cell Mol Neurobiol 1997; 17:101-118.61. Zoccorato F, Toscano P, Alexandre A. Dopamine-derived dopaminochrome promotes H2O2 release at mitochondria complex I. J Biol Chem 2005; 280:15587-15594.
Título español
 Bibliografía
 Artículo completo
(exclusivo a suscriptores)
 Autoevaluación
  Tema principal en SIIC Data Bases
 Especialidades

  English title
  Abstract
  Key words
Full text
(exclusivo a suscriptores)


Autor 
Artículos
Correspondencia
Patrocinio y reconocimiento
Imprimir esta página
 
 
 
 
 
 
 
 
 
 
 
 
Está expresamente prohibida la redistribución y la redifusión de todo o parte de los contenidos de la Sociedad Iberoamericana de Información Científica (SIIC) S.A. sin previo y expreso consentimiento de SIIC.
ua31618