Comprar este artículo
Extensión: 10.6 páginas impresas en papel A4

file05.gif (1491 bytes)
Artículos seleccionados para su compra

(especial para SIIC © Derechos reservados)
Las propiedades biológicas de casi todos los alérgenos principales pueden actualmente predecirse a partir del conocimiento de sus estructuras e indican las interacciones probables con el sistema inmunitario innato, así como las interacciones posibles con los reguladores hormonales de la inmunidad.
Thomas Wayne
Columnista Experto de SIIC

University of Western Australia

Artículos publicados por Thomas Wayne

Los estudios de unión con la IgE demostraron que muchas de las causas comunes de alergia inhalatoria, como a las gramíneas, el olivo, la ambrosía, el polen de abedul, los ácaros del polvo doméstico y algunos hongos, tienen uno o unos pocos de los alérgenos principales que pueden representar la mayoría de las respuestas alérgicas. La IgE que se une a los alérgenos de otras fuentes puede diseminarse entre diferentes proteínas o, como indica la alergia al gato, varía con la presentación clínica. Las propiedades biológicas de casi todos los alérgenos principales pueden actualmente predecirse a partir del conocimiento de sus estructuras e indican las interacciones probables con el sistema inmunitario innato, así como las interacciones posibles con los reguladores hormonales de la inmunidad. Como se encontró para las pectato liasas y las proteínas similares a Ole e1, las proteínas biológicamente similares pueden ser los alérgenos principales para muchas especies, mientras que los alérgenos Dermatophagoides spp y Blomia tropicalis muestran que los alérgenos con las mismas propiedades biológicas tienen variación entre las especies en la jerarquía alergénica. Estas propiedades demuestran que las interacciones de los alérgenos con la inmunidad innata y los inmunorreguladores serían diferentes para los distintos alérgenos, y esto coincide con las pruebas que indican que las respuestas inmunes a los alérgenos de la misma fuente sufren una regulación por aumento (upregulation), independientemente de si son respuestas a las proteínas co-presentadas alergénicas y no alergénicas.

Palabras clave
alérgeno, aeroalérgeno, innato, asma, biológica

Artículo completo

Extensión:  +/-10.6 páginas impresas en papel A4
Exclusivo para suscriptores/assinantes

IgE-binding studies show that many of the common causes of inhalant allergy such as grass, olive, ragweed and birch pollen, house dust mites and some fungi have one or a few principal allergens that can account for most of the allergic response. The IgE binding to allergens from other sources can be more evenly spread amongst different proteins or, as indicated in cat allergy, varies with clinical presentation. The biological properties of nearly all of the principal allergens can now be predicted from the knowledge of their structures and they point to likely interactions with the innate immune system, as well as possible interactions with hormonal regulators of immunity. As found for pectate lyases and the Ole e1-like proteins, biologically similar proteins can be principal allergens for many species while the Dermatophagoides spp. and Blomia tropicalis allergens show that allergens with the same biological properties reveal interspecies variation in allergen hierarchy. These properties show that the interactions of allergens with innate immunity and immuno-regulators will be different for different allergens, and this concurs with the evidence that immune responses to allergens from the same source are regulated independently, as are responses to co-presented allergenic and non-allergenic proteins.

Key words
allergen, aeroallergen, innate, asthma, biological

Clasificación en siicsalud
Artículos originales > Expertos del Mundo >
página   www.siicsalud.com/des/expertocompleto.php/

Principal: AlergiaInmunología
  Relacionadas: Medicina InternaAtención PrimariaBioquímicaMedicina FamiliarNeumonologíaOtorrinolaringologíaPediatríaDiagnóstico por Laboratorio

Enviar correspondencia a:
Thomas Wayne, University of Western Australia, 6009, 35 Stirling Highway, Crawley, WA, Perth, Australia
Bibliografía del artículo
1. Scala E, Alessandri C, Bernardi ML, et al. Cross-sectional survey on immunoglobulin E reactivity in 23,077 subjects using an allergenic molecule-based microarray detection system. Clin Exp Allergy 40(6):911-921, 2010.
2. Matricardi PM, Bockelbrink A, Keil T, et al. Dynamic evolution of serum immunoglobulin E to airborne allergens throughout childhood: results from the Multi-Centre Allergy Study birth cohort. Clin Exp Allergy 39(10):1551-1557, 2009.
3. Simpson A, Soderstrom L, Ahlstedt S, Murray CS, Woodcock A, Custovic A. IgE antibody quantification and the probability of wheeze in preschool children. J Allergy Clin Immunol 116(4): 744-749, 2005.
4. Söderström L, Kober A, Ahlstedt S, et al. A further evaluation of the clinical use of specific IgE antibody testing in allergic diseases. Allergy 58(9):921-928, 2003.
5. Haahtela T, Jaakonmäki I. Relationship of allergen-specific IgE antibodies, skin prick tests and allergic disorders in unselected adolescents. Allergy 36(4):251-256, 1981.
6. Andersson K, Lidholm J. Characteristics and immunobiology of grass pollen allergens. Int Arch Allergy Immunol 130 (2) :87-107, 2003.
7. Tabuchi A, Li LC, Cosgrove DJ. Matrix solubilization and cell wall weakening by ß-expansin (group-1 allergen) from maize pollen. Plant J 68(3):546-559, 2011.
8. Vrtala S, Focke M, Kopec J, et al. Genetic engineering of the major timothy grass pollen allergen, Phl p 6, to reduce allergenic activity and preserve immunogenicity. J Immunol 179(3):1730-1739, 2007.
9. Radauer C, Lackner P, Breiteneder H. The Bet v 1 fold: an ancient, versatile scaffold for binding of large, hydrophobic ligands. BMC Evol Biol 8:286, 2008.
10. Gadermaier G, Wopfner N, Wallner M, et al. Array-based profiling of ragweed and mugwort pollen allergens. Allergy 63(11):1543-1549, 2008.
11. Wopfner N, Jahn-Schmid B, Schmidt G, et al. The alpha and beta subchain of Amb a 1, the major ragweed-pollen allergen show divergent reactivity at the IgE and T-cell level. Mol Immunol 46(10):2090-2097, 2009.
12. Midoro-Horiuti T, Schein CH, Mathura V. et al. Structural basis for epitope sharing between group 1 allergens of cedar pollen. Mol Immunol 43(6):509-518, 2006.
13. Sun L, van Nocker S. Analysis of promoter activity of members of the pectate lyase-like (PLL) gene family in cell separation in Arabidopsis. BMC Plant Biol 10:152, 2010.
14. Lombardero M, Quirce S, Duffort O, et al. Monoclonal antibodies against Olea europaea major allergen: allergenic activity of affinity-purified allergen and depleted extract and development of a radioimmunoassay for the quantitation of the allergen. J Allergy Clin Immunol. 89(4):884-894,1992.
15. Asero R. Analysis of hypersensitivity to oleaceae pollen in an olive-free and ash-free area by commercial pollen extracts and recombinant allergens. Eur Ann Allergy Clin Immunol 43(3):77-80, 2011.
16. Rodríguez R, Villalba M, Batanero E, Palomares O, Salamanca G. Emerging pollen allergens. Biomed Pharmacother 61(1):1-7, 2007.
17. Johnson MA, Preuss D. On your mark, get set, grow! LePRK2-LAT52 interactions regulate pollen tube growth. Trends Plant Sci. 8(3):97-99, 2003.
18. Rodríguez R, Villalba M, Monsalve RI, Batanero E. The spectrum of olive pollen allergens. Int Arch Allergy Immunol 125(3):185-195, 2001.
19. Egger M, Hauser M, Mari A, Ferreira F, Gadermaier G. The role of lipid transfer proteins in allergic diseases. Curr Allergy Asthma Rep 10(5):326-335, 2010
20. Razzera G, Gadermaier G, de Paula V, et al. Mapping the interactions between a major pollen allergen and human IgE antibodies. Structure. 18(8):1011-1021, 2010.
21. Gupta N, Martin BM, Metcalfe DD, Rao PV. Identification of a novel hydroxyproline-rich glycoprotein as the major allergen in Parthenium pollen. J Allergy Clin Immunol 98(5 Pt 1):903-912, 1996.
22. Wilmes M, Cammue BP, Sahl HG, Thevissen K. Antibiotic activities of host defense peptides: more to it than lipid bilayer perturbation. Nat Prod Rep 28(8):1350-1358, 2011.
23. Yang Y, Uhlig S. The role of sphingolipids in respiratory disease. Therapeutic Advances in Respiratory Disease. 5(5):325-344, 2011.
24. Mattsson L, Lundgren T, Olsson P, Sundberg M, Lidholm J. Molecular and immunological characterization of Can f 4: a dog dander allergen cross-reactive with a 23 kDa odorant-binding protein in cow dander. Clin Exp Allergy 40(8): 1276-1287, 2010.
25. Lehman-McKeeman LD, Caudill D, Rodriguez PA, Eddy C. 2-sec-butyl-4,5-dihydrothiazole is a ligand for mouse urinary protein and rat alpha 2u-globulin: physiological and toxicological relevance. Toxicol Appl Pharmacol 149(1):32-40, 1998.
26. Krop EJM, Matsui EC, Sharrow SD, et al. Recombinant major urinary proteins of the mouse in specific IgE and IgG testing. Int Arch Allergy Immunol 144(4):296-304, 2007.
27. McDonald RE, Fleming RI, Beeley JG, et al. Latherin: A Surfactant Protein of Horse Sweat and Saliva. PLoS ONE 4(5): e5726, 2009.
28. Gakhar L, Bartlett JA, Penterman J, et al. PLUNC Is a Novel airway surfactant protein with anti-biofilm activity. PLoS ONE 5(2): e9098, 2010.
29. Zweigner J, Schumann RR, Weber JR. The role of lipopolysaccharide-binding protein in modulating the innate immune response. Microbe Infect 8(3):946-952, 2006.
30. Smith W, O'Neil SE, Hales BJ, et al. Two newly identified cat allergens: the von Ebner gland protein Fel d 7 and the latherin-like protein Fel d 8. Int Arch Allergy Immunol 156(2):159-170, 2011.
31. Mueller GA, Edwards LL, Aloor JJ, et al. The structure of the dust mite allergen Der p 7 reveals similarities to innate immune proteins. J Allergy Clin Immunol 125(4):909-917, 2010.
32. Gronlund H, Saarne T, Gafvelin G, van Hage M. The major cat allergen, Fel d 1, in diagnosis and therapy. Int Arch Allergy Immunol151(4):265-274, 2010.
33. Smith W, Butler AJ, Hazell LA. et al. Fel d 4, a cat lipocalin allergen. Clin Exp Allergy 34(11):1732-1738, 2004.
34. Erwin EA, Wickens K, Custis NJ, et al. Cat and dust mite sensitivity and tolerance in relation to wheezing among children raised with high exposure to both allergens. J Allergy Clin Immunol 115(1):74-79, 2005.
35. Gronlund H, Adedoyin J, Reininger R, et al. Higher immunoglobulin E antibody levels to recombinant Fel d 1 in cat-allergic children with asthma compared with rhinoconjunctivitis. Clin Exp Allergy 38(8):1275-1281, 2008.
36. Worm M, Lee HH, Kleine-Tebbe J, et al. Development and preliminary clinical evaluation of a peptide immunotherapy vaccine for cat allergy. J Allergy Clin Immunol 127(1):89-97, 2011.
37. Kaiser L, Velickovic TC, Badia-Martinez D, et al. Structural characterization of the tetrameric form of the major cat allergen Fel d 1. J Mol Biol 370(4):714-727, 2007.
38. Mukherjee AB, Zhang Z, Chilton BS. Uteroglobin: a steroid-inducible immunomodulatory protein that founded the Secretoglobin superfamily. Endcr Rev 28(7):707-725, 2007.
39. Reininger R, Varga EM, Zach M. et al. Detection of an allergen in dog dander that cross-reacts with the major cat allergen, Fel d 1. Clin Exp Allergy 37(1):116-124, 2007.
40. Gore JC, Schal C. Cockroach allergen biology and mitigation in the indoor environment. Annu Rev Entomol 52:439-463, 2007.
41. Sookrung N, Chaicumpa W, Tungtrongchitr A, et al. Periplaneta americana arginine kinase as a major cockroach allergen among Thai patients with major cockroach allergies. Environ Health Perspect 114(6):875-880, 2006.
42. Satinover SM, Reefer AJ, Pomes A, et al. Specific IgE and IgG antibody-binding patterns to recombinant cockroach allergens. J Allergy Clin Immunol 115(4):803-809, 2005.
43. Hindley J, Wunschmann S, Satinover SM, et al. Bla g 6: a troponin C allergen from Blattella germanica with IgE binding calcium dependence. J Allergy Clin Immunol 117(6):1389-1395, 2006.
44. Chuang JG, Su SN, Chiang BL, Lee HJ, Chow LP. Proteome mining for novel IgE-binding proteins from the German cockroach (Blattella germanica) and allergen profiling of patients. Proteomics 10(21):3854-3867, 2010.
45. Li M, Gustchina A, Alexandratos J, et al. Crystal structure of a dimerized cockroach allergen Bla g 2 complexed with a monoclonal antibody. Journal of Biological Chemistry 283(33):22806-22814, 2008.
46. Fan Y, Gore JC, Redding KO, et al. Tissue localization and regulation by juvenile hormone of human allergen Bla g 4 from the German cockroach, Blattella germanica (L.). Insect Mol Biol 14(1):45-53, 2005.
47. Thomas WR, Hales BJ, Smith WA. House dust mite allergens in asthma and allergy. Trends Mol Med 16(7):321-328, 2010.
48. Kidon MI, Chin CW, Kang LW, et al. Mite component-specific IgE repertoire and phenotypes of allergic disease in childhood: the tropical perspective. Ped Allergy Immunol 22(2):202-210, 2011.
49. O'Neil SE, Heinrich TK, Hales BJ et al. The chitinase allergens Der p 15 and Der p 18 from Dermatophagoides pteronyssinus. Clin Exp Allergy 36:831-839, 2006.
50. Hales BJ, Elliot CE, Chai LY, et al. Quantitation of IgE binding to the chitinase and chitinase-like house dust mite allergens Der p 15 and Der p 18 compared to the major and midrange allergens. (under revision)
51. Resch Y, Weghofer M, Seiberler S, et al. Molecular characterization of Der p 10: a diagnostic marker for broad sensitization in house dust mite allergy. Clin Exp Allergy 41(10):1468-1477, 2011.
52. Mueller GA, Gosavi RA, Krahn JM et al. Der p 5 crystal structure provides insight into the group 5 dust mite allergens. J Biol Chem 285(33):25394-25401, 2010.
53. Naik MT, Chang CF, Kuo IC, et al. Complete 1H, 13C and 15N resonance assignments of Blo t 5, a major mite allergen from Blomia tropicalis. J Biomol NMR 38(2):189, 2007.
54. Mueller GA, Edwards LL, Aloor JJ, et al. The structure of the dust mite allergen Der p 7 reveals similarities to innate immune proteins. J Allergy Clin Immunol 125(4):909-917, 2010.
55. Shen HD, Tam MF, Huang CH, et al. Homology modeling and monoclonal antibody binding of the Der f 7 dust mite allergen. Immunol Cell Biol 89(2):225-230, 2011.
56. Simon-Nobbe B, Denk U, Poll V, Rid R, Breitenbach M. The spectrum of fungal allergy. Int Arch Allergy Immunol 145(1):58-86, 2008.
57. Shen HD, Tam MF, Tang RB, Chou H. Aspergillus and Penicillium allergens: focus on proteases. Curr Allergy Asthma Rep 7(5):351-356, 2007.
58. Crameri R, Lidholm J, Gronlund H, Stuber D, Blaser K, Menz G. Automated specific IgE assay with recombinant allergens: evaluation of the recombinant Aspergillus fumigatus allergen I in the Pharmacia Cap System. Clin Exp Allergy 26(12):1411-1419,1996.
59. Postigo I, Gutierrez-Rodriguez A, Fernandez J, Guisantes JA, Sunen E, Martinez J. Diagnostic value of Alt a 1, fungal enolase and manganese-dependent superoxide dismutase in the component-resolved diagnosis of allergy to Pleosporaceae. Clin Exp Allergy 41(3):443-451, 2011.
60. Saenz-de-Santamaria M, Guisantes JA, Martinez J. Enzymatic activities of Alternaria alternata allergenic extracts and its major allergen (Alt a 1). Mycoses 49(4):288-292, 2006.
61. Gough L, Schulz O, Sewell HF, Shakib F. The cysteine protease activity of the major dust mite allergen Der p 1 selectively enhances the immunoglobulin E antibody response. J Exp Med 190(12):1897-1902,1999.
62. Kikuchi Y, Takai T, Kuhara T, et al. Crucial commitment of proteolytic activity of a purified recombinant major house dust mite allergen Der p1 to sensitization toward IgE and IgG responses. J Immunol 177(3):1609-1617, 2006.
63. McGlade JP, Gorman S, Lenzo JC, et al. Effect of both ultraviolet B irradiation and histamine receptor function on allergic responses to an inhaled antigen. J Immunol 178(5):2794-2802, 2007.
64. Sokol CL, Barton GM, Farr AG, Medzhitov R. A mechanism for the initiation of allergen-induced T helper type 2 responses. Nat Immunol 9(3):310-318, 2008.
65. Tang H, Cao W, Kasturi SP, et al. The T helper type 2 response to cysteine proteases requires dendritic cell-basophil cooperation via ROS-mediated signaling. Nat Immunol 11(7):608-617, 2010.
66. Cunningham PT, Elliot CE, Lenzo JC, et al. Sensitizing and Th2 adjuvant activity of cysteine protease allergens. Int Arch Allergy Immunol in press
67. Hales BJ, Martin AC, Pearce LJ, et al. IgE and IgG anti-house dust mite specificities in allergic disease. J Allergy Clin Immunol 118(2):361-367, 2006.
68. Poll V, Denk U, Shen HD, et al. The vacuolar serine protease, a cross-reactive allergen from Cladosporium herbarum. Mol Immunol 46(7):1360-1373, 2009.
69. Shakib F, Ghaemmaghami AM, Sewell HF. The molecular basis of allergenicity. Trends Immunol 29(12):633-642, 2008.
70. Stewart GA, Kollinger MR, King CM, Thompson PJ. A comparative study of three serine proteases from Dermatophagoides pteronyssinus and D. farinae. Allergy 49(7):553-560, 1994.
71. Zhang J, Saint-Remy JM, Garrod DR, Robinson C. Comparative enzymology of native and recombinant house dust mite allergen Der p 1. Allergy 64(3):469-477, 2009.
72. Ino Y, Ando T, Haida M, et al. Characterization of the proteases in the crude mite extract. Int Arch Allergy Appl Immunol 89(4):321-326,1989.
73. Yan Z, Banerjee R. Redox remodeling as an immunoregulatory strategy. Biochem 49(6):1059-1066, 2010.
74. Takai T, Kato T, Sakata Y, et al. Recombinant Der p 1 and Der f 1 exhibit cysteine protease activity but no serine protease activity. Biochem Biophys Res Com 328(4):944-952, 2005.
75. Colbert JD, Matthews SP, Miller G, Watts C. Diverse regulatory roles for lysosomal proteases in the immune response. Eur J Immunol 39(11):2955-2965, 2009.
76. Sharp FA, Ruane D, Claass B, et al. Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome. Proc Nat Acad Sci 106(3):870-875, 2009.
77. Ben-Sasson SZ, Hu-Li J, Quiel J, et al. IL-1 acts directly on CD4 T cells to enhance their antigen-driven expansion and differentiation. Proc Nat Acad Sci 106(17):7119-7124, 2009.
78. Nakanishi K, Tsutsui H, Yoshimoto T. Importance of IL-18-induced super Th1 cells for the development of allergic inflammation. Allergol Int 59(2):137-141, 2010.
79. Donnelly S, O'Neill SM, Stack CM, et al. Helminth cysteine proteases inhibit TRIF-dependent activation of macrophages via degradation of TLR3. J Biol Chem 285(5):3383-3392, 2010.
80. Wills-Karp M. Current Allergen-specific pattern recognition receptor pathways. Curr Opin Immunol 22(6):777-782, 2010.
81. Chieppa M, Bianchi G, Doni A, et al. Cross-linking of the mannose receptor on monocyte-derived dendritic cells activates an anti-inflammatory immunosuppressive program. J Immunol 171(9):4552-4560, 2003.
82. Muller U, Stenzel W, Kohler G, et al. IL-13 induces disease-promoting type 2 cytokines, alternatively activated macrophages and allergic inflammation during pulmonary infection of mice with Cryptococcus neoformans. J Immunol 179(8):5367-5377, 2007.
83. Gomez-Garcia L, Rivera-Montoya I, Rodriguez-Sosa M, Terrazas LI. Carbohydrate components of Taenia crassiceps metacestodes display Th2-adjuvant and anti-inflammatory properties when co-injected with bystander antigen. Parasitol Res 99(4):440-448, 2006.
84. Daley JM, Brancato SK, Thomay AA, Reichner JS, Albina JE. The phenotype of murine wound macrophages. J Leuk Biol 87(1):59-67, 2010.
85. Kurowska-Stolarska M, Stolarski B, Kewin P, et al. IL-33 amplifies the polarization of alternatively activated macrophages that contribute to airway inflammation. J Immunol 183(10):6469-6477, 2009.
86. Chruszcz M, Chapman MD, Vailes LD, et al. Crystal structures of mite allergens Der f 1 and Der p 1 reveal differences in surface-exposed residues that may influence antibody binding. J Mol Biol 386(2):520-530, 2009.
87. Li M, Gustchina A, Glesner J, et al. Carbohydrates contribute to the interactions between cockroach allergen Bla g 2 and a monoclonal antibody. J Immunol 186(1):333-340, 2011.
88. Deslée G, Charbonnier AS, Hammad H, et al. Involvement of the mannose receptor in the uptake of Der p 1, a major mite allergen, by human dendritic cells. J Allergy Clin Immunol 110(5):763-770, 2002.
89. Royer PJ, Emara M, Yang C, et al. The mannose receptor mediates the uptake of diverse native allergens by dendritic cells and determines allergen-induced T cell polarization through modulation of IDO activity. J Immunol 185(3):1522-1531, 2010.
90. Emara M, Royer PJ, Abbas Z, et al. Recognition of the major cat allergen Fel d 1 through the cysteine-rich domain of the mannose receptor determines its allergenicity. J Biol Chem 286(15):13033-13040, 2011.
91. Swoboda I, Jilek A, Ferreira F, et al. Isoforms of Bet v 1, the major birch pollen allergen, analyzed by liquid chromatography, mass spectrometry, and cDNA cloning. J Biol Chem 270(6):2607-2613, 1995.
92. Koistinen H, Koistinen R, Seppala M, Burova TV, Choiset Y, Haertle T. Glycodelin and beta-lactoglobulin, lipocalins with a high structural similarity, differ in ligand binding properties. FEBS Lett 450(1-2):158-162,1999.
93. Vrtala S, Mayer P, Ferreira F, et al. Induction of IgE antibodies in mice and rhesus monkeys with recombinant birch pollen allergens: different allergenicity of Bet v 1 and Bet v 2. J Allergy Clin Immunol 98(5):913-921, 1996.
94. Adel-Patient K, Nahori MA, Proust B, et al. Elicitation of the allergic reaction in manifestations differ according to the structure of the allergen used for challenge. Clin Exp Allergy 33(3):376-385,2003.
95. Lienard D, Tran Dinh O, van Oort E, et al. Suspension-cultured BY-2 tobacco cells produce and mature immunologically active house dust mite allergens. Plant Biotech J 5(1):93-108, 2007.
95. Wopfner N, Gadermaier G, Egger M, et al. The spectrum of allergens in ragweed and mugwort pollen. Int Arch Allergy Immunol 138(4):337-346, 2005.
96. Thomas WR, Hales BJ, Smith WA. Structural biology of allergens. Curr Allergy Asthma Rep 5(5):388-393, 2005.
97. Trompette A, Divanovic S, Visintin A, et al. Allergenicity resulting from functional mimicry of a Toll-like receptor complex protein. Nature 457(7229):585-588, 2009.
98. Piggott DA, Eienbarth SC, Xu L, et al. MyD88-dependent induction of allergic Th2 responses to intranasal antigen. J Clin Invest 115(2):459-467, 2005.
99. Holt PG, Batty JE, Turner KJ. Inhibition of specific IgE responses in mice by pre-exposure to inhaled antigen. Immunol 42(3):409-417, 1981.
100. Ichikawa S, Takai T, Yashiki T, et al. Lipopolysaccharide binding of the mite allergen Der f 2. Genes Cells 14(9):1055-1065, 2009.
101. Park BS, Song DH, Kim HM, Choi BS, Lee H, Lee JO. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 458(7242):1191-1195, 2009.
102. Logdberg L, Wester L. Immunocalins: a lipocalin subfamily that modulates immune and inflammatory responses. Biochim Biophys Acta 1482(1-2):284-297, 2000.
103. Luczynska CM, Li Y, Chapman MD, Platts-Mills TA. Airborne concentrations and particle size distribution of allergen derived from domestic cats (Felis domesticus). Measurements using cascade impactor, liquid impinger, and a two-site monoclonal antibody assay for Fel d I. Am Rev Resp Dis 141(2):361-367, 1990.
104. Mandal AK, Zhang Z, Ray R, et al. Uteroglobin represses allergen-induced inflammatory response by blocking PGD2 receptor-mediated functions. J Exp Med 199(10):1317-1330, 2004.
105. Arima M, Fukuda T. Prostaglandin D2 and T(H)2 inflammation in the pathogenesis of bronchial asthma. Korean J Intern Med 26(1):8-18, 2011.
106. Plotz SG, Traidl-Hoffmann C, Feussner I, et al. Chemotaxis and activation of human peripheral blood eosinophils induced by pollen-associated lipid mediators. J Allergy Clin Immunol 113(6):1152-1160, 2004.
107. Yang Y, Uhlig S. The role of sphingolipids in respiratory disease. Ther Adva Respir Dis 5(5):325-344, 2011.
108. Brigotti M, Carnicelli D, Ravanelli E, et al. Molecular damage and induction of proinflammatory cytokines in human endothelial cells exposed to Shiga toxin 1, Shiga toxin 2, and alpha-sarcin. Infect Immunity 75(5):2201-2207, 2007.
109. Yennawar NH, Li LC, Dudzinski DM, Tabuchi A, Cosgrove DJ. Crystal structure and activities of EXPB1 (Zea m 1), a beta-expansin and group-1 pollen allergen from maize. Proc Natl Acad Sci 103(40):14664-146671, 2006.
110. Shani N, Shani Z, Shoseyov O, Mruwat R, Shoseyov D. Oxidized cellulose binding to allergens with a carbohydrate-binding module attenuates allergic reactions. J Immunol 186(2):1240-1247, 2011.
111. Ruperti B, Whitelaw CA, Roberts JA. Isolation and expression of an allergen-like mRNA from ethylene-treated Sambucus nigra leaflet abscission zones. J Exp Botany 50(334):733-734, 1999.
112. Oseroff C, Sidney J, Kotturi MF, et al. Molecular determinants of T cell epitope recognition to the common Timothy grass allergen. J Immunol 185(2):943-955, 2010.
113. Batard T, Hrabina A, Bi XZ, et al. Production and proteomic characterization of pharmaceutical-grade Dermatophagoides pteronyssinus and Dermatophagoides farinae extracts for allergy vaccines. Int Arch Allergy Immunol 140(4):295-305, 2006.
114. Epton MJ, Smith W, Hales BJ, Hazell L, Thompson PJ, Thomas WR. Non-allergenic antigen in allergic sensitization: responses to the mite ferritin heavy chain antigen by allergic and non-allergic subjects. Clin Exp Allergy 32(9):1341-1347, 2002.

Título español
 Palabras clave
 Artículo completo
(exclusivo a suscriptores)
  Tema principal en SIIC Data Bases

 English title
 Key words
Full text
(exclusivo a suscriptores)

Patrocinio y reconocimiento
Imprimir esta página
Clasificado en
Artículos originales>
Expertos del Mundo

Especialidad principal:

 Medicina Interna
 Atención Primaria
 Medicina Familiar
 Diagnóstico por Laboratorio
Suscripción a siicsalud

Comprar este artículo
Extensión: ± 10.6 páginas impresas en papel A4

file05.gif (1491 bytes) Artículos seleccionados para su compra
Está expresamente prohibida la redistribución y la redifusión de todo o parte de los contenidos de la Sociedad Iberoamericana de Información Científica (SIIC) S.A. sin previo y expreso consentimiento de SIIC.

Suscripción a siicsalud

anterior.gif (1015 bytes)

Bienvenidos a siicsalud

Acerca de SIIC     Estructura de SIIC

Sociedad Iberoamericana de Información Científica (SIIC)
Av. Belgrano 430, (C1092AAR), ciudad de Buenos Aires, Argentina
Tel: +54 11 4342 4901
Casilla de Correo 2568, (C1000WAZ) Correo Central, ciudad de Buenos Aires
Copyright siicsalud© 1997-2017, Sociedad  Iberoamericana de Información Científica (SIIC)
ISSN siicsalud: 1667-9008
Mensajes a SIIC