EL AGONISTA SINTETICO DEL RECEPTOR GAMMA ACTIVADO POR PROLIFERADOR DE PEROXISOMAS, ROSIGLITAZONA, AUMENTA LOS NIVELES PLASMATICOS DE ADIPONECTINA EN PACIENTES CON DIABETES TIPO 2: CONSECUENCIAS CLINICAS





EL AGONISTA SINTETICO DEL RECEPTOR GAMMA ACTIVADO POR PROLIFERADOR DE PEROXISOMAS, ROSIGLITAZONA, AUMENTA LOS NIVELES PLASMATICOS DE ADIPONECTINA EN PACIENTES CON DIABETES TIPO 2: CONSECUENCIAS CLINICAS

(especial para SIIC © Derechos reservados)
La rosiglitazona eleva en más de dos veces el nivel promedio de adiponectina en plasma. El tratamiento con rosiglitazona parece ser el único parámetro relacionado en forma independiente con las modificaciones en la adiponectina plasmática.
chuang.jpg Autor:
Lee-ming Chuang
Columnista Experto de SIIC
Artículos publicados por Lee-ming Chuang
Recepción del artículo
28 de Noviembre, 2003
Primera edición
30 de Abril, 2004
Segunda edición, ampliada y corregida
7 de Junio, 2021

Resumen
La adiponectina, una citoquina de adipocitos, tiene propiedades antiinflamatorias y antiaterogénicas. La administración de adiponectina a animales se asocia con reducción de la glucosa plasmática y aumento de la sensibilidad a la insulina. En el hombre, la concentración plasmática de adiponectina se ha relacionado con los principales componentes del síndrome metabólico. El receptor γ activado por proliferador de peroxisomas (PPAR)-γ es un factor transcripcional crucial que controla muchos genes de adipocitos. Investigamos si el nivel de adiponectina podía elevarse con el tratamiento con el agonista del PPAR-γ -rosiglitazona- en pacientes con diabetes tipo 2 reclutados para un estudio aleatorizado a doble ciego y controlado con placebo. El nivel promedio de adiponectina aumentó más dos veces (P = 0.0005) en el grupo asignado a rosiglitazona mientras que no se observaron cambios en el grupo placebo. El análisis de regresión lineal de multivariado mostró que el tratamiento con rosiglitazona fue el único parámetro relacionado en forma significativa con las modificaciones en la adiponectina plasmática. La terapia contribuyó con el 24% de la variabilidad en la concentración sérica de adiponectina luego del control de otros factores de confusión. En un estudio genético en una amplia cohorte de familias hipertensas, encontramos que el polimorfismo del gen de adiponectina se asocia con la sensibilidad a la insulina. El efecto de la adiponectina se modifica acorde a los genotipos PPAR-γ2, lo cual indica una interacción genética en la sensibilidad a la insulina. Estas observaciones sugieren que la mayor expresión de adiponectina puede contribuir con los beneficios anti-hiperglucémicos y posiblemente antiaterogénicos de los agonistas del PPAR-&gamma.


Artículo completo

(castellano)
Extensión:  +/-9.27 páginas impresas en papel A4
Exclusivo para suscriptores/assinantes

Abstract
Adiponectin, an adipocytokine, exhibits anti-inflammatory and anti-atherogenic properties. Administration of adiponectin to animals reduces plasma glucose and increased insulin sensitivity. In human subjects, plasma levels of adiponectin have been linked with major components of metabolic syndrome. The peroxisome proliferators-activated receptor (PPAR)-γ is a key transcriptional factor that controls many adipocyte genes. We investigated whether the level of adiponectin could be increased by treatment with a PPAR-γ agonist, rosiglitazone, in type 2 diabetes patients recruited for a randomized double-blind placebo-controlled trial. The mean plasma adiponectin level was increased by more than twofold (P<0.0005) in the rosiglitazone group, whereas no change was observed in the placebo group. Multivariate linear regression analysis showed that rosiglitazone treatment was the single variable significantly related to the changes of plasma adiponectin. The treatment contributed to 24% of the variance in changes of plasma adiponectin after adjusting for other factors. In a genetic study based on a large hypertensive family cohort, we found that adiponectin gene polymorphism was associated with insulin sensitivity. The effect of adiponectin was modified by PPARγ2 genotypes, indicating a genetic interaction in insulin sensitivity. These observations suggest that increased adiponectin expression may contribute to the anti-hyperglycemic and putative anti-atherogenic benefits of PPAR-γ agonists.


Full text
(english)
para suscriptores/ assinantes

Clasificación en siicsalud
Artículos originales > Expertos del Mundo >
página   www.siicsalud.com/des/expertocompleto.php/

Especialidades
Principal: Endocrinología y Metabolismo
Relacionadas: Bioquímica, Farmacología, Medicina Farmacéutica



Comprar este artículo
Extensión: 9.27 páginas impresas en papel A4

file05.gif (1491 bytes) Artículos seleccionados para su compra



Bibliografía del artículo
  1. Funahashi T, Nakamura T, Shimomura I, et al. Role of adipocytokines on the pathogenesis of atherosclerosis in visceral obesity. Intern Med 1999;3:202.206.
  2. Hu E, Liang P, Spiegelman BM. AdipoQ is a novel adipocyte-specific gene dysregulated in obesity. J Biol Chem 1996; 271:10697-10703.
  3. Scherer PE, Williams S, Fogliano M, et al. A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem 1995; 270:26746-26749.
  4. Maeda K, Okubo K, Shimomura I, et al. cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1. Biochem Biophys Res Commun 1996; 221:286-289.
  5. Nakano Y, Tobe T, Choi-Miura NH, et al. Isolation and characterization of GBP28, a novel gelatin-binding protein purified from human plasma. J Biochem 1996; 120:803-812.
  6. Ouchi N, Kihara S, Arita Y, et al. Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation 1999; 100:2473–2476.
  7. Ouchi N, Kihara S, Arita Y, et al. Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappa B signaling through a cAMP-dependent pathway. Circulation 2000;102:1296-1301.
  8. Yokota T, Oritani K, Takahashi I, et al. Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. Blood 96:1723-1732, 2000
  9. Ouchi N, Kihara S, Arita Y, et al. Adipocyte-derived plasma protein, adiponectin,suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages. Circulation 2001;103:1057-1063.
  10. Okamoto Y, Arita Y, Nishida M, et al. An adipocyte-derived plasma protein, adiponectin, adheres to injured vascular walls. Horm Metab Res 2000;32:47-50.
  11. Arita Y, Kihara S, Ouchi N, et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun 1999;257:79-83.
  12. Hotta K, Funahashi T, Arita Y, et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol 2000;20:1595-1599.
  13. Yang WS, Lee WJ, Funahashi T, et al. Plasma adiponectin levels in overweight and obese Asians. Obesity Research 2002;10:1104-1110
  14. Huang KC, Chen CL, Chuang LM, et al. Plasma adiponectin levels and blood pressures in nondiabetic adolescent females. J Clin Endocrinol Metab 2003;88:4130-4134.
  15. Weyer C, Funahashi T, Tanaka S, et al. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab 2001; 86:1930-1935.
  16. Fruebis J, Tsao T-S, Javorschi S, et al. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc Natl Acad Sci U S A 2001;98:2005-2010.
  17. Yamaichi T, Kamon J, Waki H, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 2001;7:941-946.
  18. Berg AH, Combs TP, Du X, et al. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med 2001;7:947-953
  19. Rocchi S, Auwerx J. Peroxisome proliferators-activated receptor-gamma: a versatile metabolic regulator. Annals of Medicine 1999; 31:342-351
  20. Whitcomb RW, Saltiel AR. Thiazolidinediones. Expert Opin Invest Drug 1995;4:1299-1309.
  21. Lin WS, Chang HM, Tai TY, et al. Effect of thiazolidinedione on gene expression in NIH3T3–L1 adipocytes (Abstract). Diabetes 1999;48 (Suppl. 1):A217.
  22. Yang WS, Jeng CY, Wu TJ, et al. Synthetic peroxisome proliferators-activated receptor-γ agonist, rosiglitazone, increases plasma levels of adiponectin in type 2 diabetic patients. Diabetes Care 2002;25:376-380.
  23. Balfour JA, Plosker GL. Rosiglitzaone. Drugs 1999;57:921-930.
  24. Mattews DR, Hosker JP, Rudenski AS, et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985; 28:412-419.
  25. Hotta K, Funahashi T, Bodkin NL, et al. Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in Rhesus monkeys. Diabetes 2001;50:1126-1133.
  26. Yang WS, Lee WJ, Funahashi T, et al. Weight reduction increases plasma levels of an adipose-derived anti-inflammatory protein adiponectin. J Clin Endocrinol Metab 2001;86:3815-3819.
  27. Shulman GI. Cellular mechanism of insulin resistance. J Clin Invest 2000; 106:171-176.
  28. Saito K, Tobe T, Minoshima S, et al. Organization of the gene for gelatin-binding protein (GBP28). Gene 1999;229:67-73.
  29. Schäffler A, Langmann T, Palitzsch KD, et al. Identification and characterization of the human adipocyte apM-1 promoter. Biochim Biophys Acta 1998;1399:187-197.
  30. Okuno A, Tamemoto H, Tobe K, et al. Troglitazone increases the number of small adipocytes without the change of white adipose tissue mass in obese Zucker rats. J Clin Invest 1998;101:1354-1361.
  31. Stumvoll M, Tschritter O, Fritsche A, et al. Association of the T-G polymorphism in adiponectin (exon 2) with obesity and insulin sensitivity: interaction with family history of type 2 diabetes. Diabetes2002;51:37-41.
  32. Kondo H, Shimomura I, Matsukawa Y, et al. Association of adiponectin mutation with type 2 diabetes: a candidate gene for the insulin resistance syndrome. Diabetes 2002;51:2325-2328.
  33. Zietz B, Barth N, Scholmerich J, et al. Gly15Gly polymorphism within the human adipocyte-specific apM-1gene but not Tyr111His polymorphism is associated with higher levels of cholesterol and LDL-cholesterol in Caucasian patients with type 2 diabetes. Exp Clin Endocrinol Diabetes 2001;109:320-325.
  34. Yang WS, Chen MH, Lee WJ, et al. Adiponectin mRNA levels in the abdominal adipose depots of nondiabetic women. International Journal of Obesity 2003;27,896-900.
  35. Yang WS, Tsou PL, Lee WL, et al. Allele-specific differential expression of a common adiponectin gene polymorphism related to obesity. J Mol Med 2003;81:428-434.
  36. Chuang LM, Hsiung CA, Chen YD, et al. Sibling-based association study of the PPARgamma2 Pro12Ala polymorphism and metabolic variables in Chinese and Japanese hypertension families: a SAPPHIRe study. Stanford Asian-Pacific Program in Hypertension and Insulin Resistance. J Mol Med 2001;79:656-664
  37. Yang WS, Hsiung CA, Ho LT, et al. Genetic epistasis of adiponectin and PPARγ2 genotypes in modulation of insulin sensitivity: a family-based association study. Diabetologia 2003;46:977-983.

Título español
Resumen
 Bibliografía
 Artículo completo
(exclusivo a suscriptores)
 Autoevaluación
  Tema principal en SIIC Data Bases
 Especialidades

 English title
 Abstract
  Key words
Full text
(exclusivo a suscriptores)

Autor 
Artículos
Correspondencia

Patrocinio y reconocimiento
Imprimir esta página
 
 
 
 
 
 
 
 
 
 
 
 
Está expresamente prohibida la redistribución y la redifusión de todo o parte de los contenidos de la Sociedad Iberoamericana de Información Científica (SIIC) S.A. sin previo y expreso consentimiento de SIIC.
ua31618