IMPORTANCIA DEL MICROBIOMA EN LA SALUD HUMANA Y APLICACIONES MEDICAS




Artículos relacionadosArtículos relacionadosArtículos relacionados
Artículos afines de siicsalud publicados en los últimos 4 meses
SÍNDROME DEL INTESTINO IRRITABLE: RELACIONES ENTRE LA DIETA Y MICROBIOTA INTESTINAL
Gut Microbes 15(2):1-13
Difundido en siicsalud: 2 feb 2024
TRASPLANTE FECAL EN LA ENFERMEDAD INFLAMATORIA INTESTINAL
Biomedicines 11(4):1-13
Difundido en siicsalud: 1 feb 2024

IMPORTANCIA DEL MICROBIOMA EN LA SALUD HUMANA Y APLICACIONES MEDICAS

(especial para SIIC © Derechos reservados)
Los estudios del microbioma pronto serán parte fundamental en el área médica. Al mismo tiempo, los avances en tecnologías de secuenciación y biología sintética y las aplicaciones de inteligencia artificial en el procesamiento de datos permiten nuevos abordajes en diagnósticos, tratamientos y análisis clínicos de diversas enfermedades.
Autor:
Andrés Zuñiga Orozco
Columnista Experto de SIIC

Institución:
Universidad Estatal a Distancia


Artículos publicados por Andrés Zuñiga Orozco
Coautores
María Mercedes Oreamuno Rodríguez* Thomaz Satuye Prieto de Lima** Verónica Arias Pérez* Keilor Rojas Jiménez*** 
Licenciada en Biología, Universidad de Costa Rica, San José, Costa Rica*
Bachiller en biología, Universidad de Costa Rica, San José, Costa Rica**
Investigador, Universidad de Costa Rica, San José, Costa Rica***
Aprobación
28 de Febrero, 2023
Primera edición
1 de Marzo, 2023
Segunda edición, ampliada y corregida
4 de Abril, 2024

Resumen
Recientes investigaciones han relacionado la microbiota intestinal con la salud humana en múltiples aspectos. La evolución de los estilos de vida ha determinado un cambio en la composición de las bacterias intestinales, así como la implicación que la comunidad de estas ejerce sobre la salud. Actualmente, se conoce que la mayoría de las bacterias presentes en el sistema gastrointestinal pertenecen principalmente a los fila Firmicutes y Bacterioidetes, aunque también se encuentran otros grupos tales como proteobacterias y actinobacterias. A medida que se avanza en el tracto gastrointestinal predominan algunos géneros de bacterias. Los efectos de la microbiota pueden ser directos e indirectos, además, dependen de muchos factores tales como la edad de la persona, el grupo etario, la genética del individuo, la dieta y el estilo de vida. Durante los últimos años, la accesibilidad a tecnologías de secuenciación ha permitido tener un acercamiento más estrecho a la microbiota intestinal. Esto, sumado a herramientas bioinformáticas, ha permitido establecer relaciones microbiales entre la cantidad y estructura poblacional y las manifestaciones clínicas en el ser humano. Algunas de las afecciones estudiadas y que tienen relación con la microbiota intestinal son: la obesidad, la diabetes, el cáncer, las enfermedades relacionadas con el cerebro, las enfermedades cardiovasculares y las enfermedades gastrointestinales. De acuerdo con lo mencionado, se hizo una recopilación de información de carácter científico en cuanto a estudios relevantes que describen la relación microbiota-salud humana, casos donde se observa compromiso del organismo, al mismo tiempo que se describen opciones terapéuticas propuestas y un abordaje de perspectivas futuras.

Palabras clave
microbiota, medicina de precisión, prebióticos, probióticos, microbioma


Artículo completo

(castellano)
Extensión:  +/-9.04 páginas impresas en papel A4
Exclusivo para suscriptores/assinantes

Abstract
Recent research has linked gut microbiota to human health in multiple ways. The evolution of lifestyles has determined a change in the composition of intestinal bacteria, as well as the implications that they exert on health. Currently, it is known that most of the bacteria present in the gastrointestinal sector belong mainly to the phylum Firmicutes and Bacterioidetes, although there are also other groups such as proteobacteria and actinobacteria. As it progresses through the gastrointestinal tract, some genera of bacteria and species predominate. The effects of the microbiota can be direct and indirect, and also depend on many factors such as the age of the person, the age group, the individual's genetics, diet, and lifestyle. In recent years, accessibility to sequencing technologies has allowed for a closer approach to the intestinal microbiota. This, added to bioinformatic tools has allowed establishing microbial relationships in terms of quantity and population structure with clinical manifestations in humans. Some of the pathologies studied that are related to intestinal microbiota are obesity, diabetes, cancer, brain-related diseases, cardiovascular diseases, and gastrointestinal diseases. A compilation of scientific information is made regarding relevant studies that describe the microbiota-human health relationship, cases where the organism is affected, as well as proposed therapeutic options and an approach to future perspectives.

Key words
microbiota, precision medicine, prebiotics, probiotics, microbiome


Clasificación en siicsalud
Artículos originales > Expertos de Iberoamérica >
página   www.siicsalud.com/des/expertocompleto.php/

Especialidades
Principal: Gastroenterología, Salud Pública
Relacionadas: Atención Primaria, Bioquímica, Diabetología, Endocrinología y Metabolismo, Genética Humana, Informática Biomédica, Medicina Interna, Oncología



Comprar este artículo
Extensión: 9.04 páginas impresas en papel A4

file05.gif (1491 bytes) Artículos seleccionados para su compra



Enviar correspondencia a:
Andrés Zuñiga Orozco, Universidad Estatal a Distancia, San José, Costa Rica
Bibliografía del artículo
1. del Campo-Moreno R, Alarcón-Cavero T, D'Auria G, Delgado-Palacio S, Ferrer-Martínez M. Microbiota en la salud humana: técnicas de caracterización y transferencia. Enferm Infecc Microbiol Clin 36(4):241-245, 2018.
2. Alarcón P, González M, Castro É. Rol de la microbiota gastrointestinal en la regulación de la respuesta inmune. Rev Med Chil 144(7):910-916, 2016.
3. Bull MJ, Plummer NT. Part 1: The human gut microbiome in health and disease. Integr. Med 13:17-22, 2014.
4. Logares R, Sunagawa S, Salazar G, Cornejo-Castillo FM, Ferrera I, Sarmento H, et al. Metagenomic 16S rDNA Illumina tags are a powerful alternative to amplicon sequencing to explore diversity and structure of microbial communities. Environ Microbiol 16(9):2659-2671, 2014.
5. Ochoa C. La biota intestinal, el metabolismo energético y la diabetes mellitus. Rev Cubana Aliment Nutr 23(1):113-129, 2013.
6. Hansen MEB, Rubel MA, Bailey AG, Ranciaro A, Thompson SR, Campbell MC, et al. Population structure of human gut bacteria in a diverse cohort from rural Tanzania and Botswana. Genome Biol 20(1):1-21, 2019.
7. Tinahones F. La importancia de la microbiota en la obesidad. Rev Esp Endocrinol Pediatr 8(1):16-20, 2017.
8. Greenhalgh K, Meyer KM, Aagaard KM, Wilmes P. The human gut microbiome in health: establishment and resilience of microbiota over a lifetime. Environ Microbiol 18(7):2103-2116, 2016.
9. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al. Human gut microbiome viewed across age and geography. Nature 486(7402):222-227, 2012.
10. Wibowo MC, Yang Z, Borry M, Hübner A, Huang KD, Tierney BT, et al. Reconstruction of ancient microbial genomes from the human gut. Nature 594(7862):234-239, 2021.
11. Groussin M, Poyet M, Sistiaga A, Kearney SM, Moniz K, Noel M, et al. Elevated rates of horizontal gene transfer in the industrialized human microbiome. Cell 184(8):2053-2067, 2021.
12. Forster SC, Kumar N, Anonye BO, Almeida A, Viciani E, Stares MD, et al. A human gut bacterial genome and culture collection for improved metagenomic analyses. Nat Biotechnol 37(2):186-192, 2019.
13. Sonnenburg JL, Sonnenburg ED. Vulnerability of the industrialized microbiota. Science 366(6464):eaaw9255, 2019.
14. Groussin M, Poyet M, Sistiaga A, Kearney SM, Moniz K, Noel M, et al. Industrialization is associated with elevated rates of horizontal gene transfer in the human microbiome. BioRxiv, 2020.
15. Andersson AF, Lindberg M, Jakobsson H, Bäckhed F, Nyrén P, Engstrand L. Comparative analysis of human gut microbiota by barcoded pyrosequencing. PLoS One 3(7):1-8, 2008.
16. Jang EJ, Park SW, Park JS, Park SJ, Hahm KB, Paik SY, et al. The influence of the eradication of Helicobacter pylori on gastric ghrelin, appetite, and body mass index in patients with peptic ulcer disease. J Gastroenterol Hepatol (Aust.):S278-S285, 2008.
17. Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124(4):837-848, 2006.
18. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444(7122):1027-1031, 2006.
19. Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41(1):1-11, 2013.
20. Dewulf EM, Cani PD, Claus SP, Fuentes S, Puylaert PGB, Neyrinck AM, et al. Insight into the prebiotic concept: Lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut 62(8):1112-1121, 2013.
21. Chu JR, Kang SY, Kim SE, Lee SJ, Lee YC, Sung MK. Prebiotic UG1601 mitigates constipation-related events in association with gut microbiota: A randomized placebo-controlled intervention study. World J Gastroenterol 25(40):6129-6144, 2019.
22. Nadal I, Santacruz A, Marcos A, Warnberg J. Shifts in clostridia, bacteroides and immunoglobulin-coating fecal bacteria associated with weight loss in obese adolescents. Int J Obes 33(7):758-767, 2009.
23. Santacruz A, Collado MC, Azcona C. Weight loss influences gut microbial composition in 26 overweight adolescents. Obesity 23(1):1-10, 2009.
24. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. Nature 457(7228):480-484, 2009.
25. Hooper L v., Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI. Molecular analysis of commensal host-microbial relationships in the intestine. Science 291(5505):881-884, 2001.
26. Bäckhed F, Ding H, Wang T, Hooper L v, Koh GY, Nagy A, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 101(44):15718-15723, 2004.
27. Bäckhed F, Manchester JK, Semenkovich CF, Gordon JI. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci USA 104(3):979-984, 2007.
28. Sanz Y, Santacruz A, Dalmau J. Influencia de la microbiota intestinal en la obesidad y las alteraciones del metabolismo. Acta Pediatr Esp 67(9):437-442, 2009.
29. Mukherjee A, Lordan C, Ross RP, Cotter PD. Gut microbes from the phylogenetically diverse genus Eubacterium and their various contributions to gut health. Gut Microbes 12(1):e1802866, 2020.
30. Tilg H, Moschen AR. Microbiota and diabetes: An evolving relationship. Gut 63(9):1513-1521, 2014.
31. Blandino G, Inturri R, Lazzara F, di Rosa M, Malaguarnera L. Impact of gut microbiota on diabetes mellitus. Diabetes Metab 42(5):303-315, 2016.
32. Wang J, Qin J, Li Y, Cai Z, Li S, Zhu J, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490(7418):55-60, 2012.
33. Larsen N, Vogensen FK, van den Berg FWJ, Nielsen DS, Andreasen AS, Pedersen BK, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 5(2):e9085, 2010.
34. Van Ameringen M, Turna J, Patterson B, Pipe A, Mao RQ, Anglin R, et al. The gut microbiome in psychiatry: A primer for clinicians. Depress Anxiety 36(11):1004-1025, 2019.
35. Sherwin E, Dinan TG, Cryan JF. Recent developments in understanding the role of the gut microbiota in brain health and disease. Ann N Y Acad Sci 1420(1):5-25, 2018.
36. Neufeld KM, Kang N, Bienenstock J, Foster JA. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil 23(3):255-264, 2011.
37. Esnafoglu E, C?rr?k S, Ayy?ld?z SN, Erdil A, Ertürk EY, Dagl? A, et al. Increased serum zonulin levels as an intestinal permeability marker in autistic subjects. J Pediatr 188:240-244, 2017.
38. Kang DW, Adams JB, Gregory AC, Borody T, Chittick L, Fasano A, et al. Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: An open-label study. Microbiome 5(1):1-16, 2017.
39. Sears CL, Garrett WS. Microbes, microbiota, and colon cancer. Cell Host Microbe 15(3):317-328, 2014.
40. Garrett WS. Cancer and the microbiota. Science 348(6230):80-86, 2015.
41. Mimee M, Citorik RJ, Lu TK. Microbiome therapeutics - Advances and challenges. Adv Drug Deliv Rev 105:44-54, 2016.
42. Adak A, Khan MR. An insight into gut microbiota and its functionalities. CMLS 76(3):473-493, 2019.
43. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. Expert consensus document: The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11(8):506-514, 2014.
44. Guarner F, Khan AG, Garisch J, Eliakim R, Gangl A, Thomson A, et al. World gastroenterology organisation global guidelines: Probiotics and prebiotics. J Clin Gastroenterol 46(6):468-481, 2012.
45. Aldrich AM, Argo T, Koehler TJ, Olivero R. Analysis of treatment outcomes for recurrent Clostridium difficile infections and fecal microbiota transplantation in a pediatric hospital. Pediatr Infect Dis J 38(1):32-36, 2019.
46. Sonnenburg ED, Sonnenburg JL. Starving our microbial self: The deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metab 20(5):779-789, 2014.
47. Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, Wingreen NS, Sonnenburg JL. Diet-induced extinctions in the gut microbiota compound over generations. Nature 529(7585):212-215, 2016.
48. Schnorr SL, Candela M, Rampelli S, Centanni M, Consolandi C, Basaglia G, et al. Gut microbiome of the Hadza hunter-gatherers. Nat Commun 5(1):1-12, 2014.
49. Claesson MJ, Jeffery IB, Conde S, Power SE, O'connor EM, Cusack S, et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 488(7410):178-184, 2012.
50. Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol 14:1-12, 2017.
51. Savignac HM, Corona G, Mills H, Chen L, Spencer JPE, Tzortzis G, et al. Prebiotic feeding elevates central brain derived neurotrophic factor, N-methyl-d-aspartate receptor subunits and d-serine. Neurochem Int 63(8):756-764, 2013.
52. Messaoudi M, Rozan P, Nejdi A, Hidalgo S, Desor D. Behavioural and cognitive effects of oligofructose-enriched inulin in rats. Br J Nutr 93(S1):S27-S30, 2005.
53. Waworuntu R, Hain H, Chang Q, Thiede L, Hanania T, Berg B. Dietary prebiotics improve memory and social interactions while reducing anxiety when provided early in life to normally developing rodents (637.5). FASEB J 28(637.5), 2014.
54. Sanders ME, Merenstein DJ, Reid G, Gibson GR, Rastall RA. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat Rev Gastroenterol Hepatol 16(10):605-616, 2019.
55. Sassone-Corsi M, Raffatellu M. No vacancy: How beneficial microbes cooperate with immunity to provide colonization resistance to pathogens. J Immunol 194(9):4081-4087, 2015.
56. Cho YA, Kim J. Effect of probiotics on blood lipid concentrations: A meta-analysis of randomized controlled trials. Medicine 94(43):e1714, 2015.
57. Wallace CJK, Milev R. The effects of probiotics on depressive symptoms in humans: A systematic review. Ann. Gen. Psychiatry 16(1):1-10, 2017.
58. Weingarden AR, Chen C, Zhang N, Graiziger CT, Dosa PI, Steer CJ, et al. Ursodeoxycholic acid inhibits clostridium difficile spore germination and vegetative growth, and prevents the recurrence of ileal pouchitis associated with the infection. J Clin Gastroenterol 50(8):624-630, 2016.
59. Weingarden AR, Chen C, Bobr A, Yao D, Lu Y, Nelson VM, et al. Microbiota transplantation restores normal fecal bile acid composition in recurrent Clostridium difficile infection. Am J Physiol Gastrointest Liver Physiol 306(4):G310-G319, 2014.
60. Kassam Z, Lee CH, Yuan Y, Hunt RH. Fecal microbiota transplantation for clostridium difficile infection: Systematic review and meta-analysis. Am J Gastroenterol 108(4):500-508, 2013.
61. Millan B, Park H, Hotte N, Mathieu O, Burguiere P, Tompkins TA, et al. Fecal microbial transplants reduce antibiotic-resistant genes in patients with recurrent Clostridium difficile infection. Clin Infect Dis 62(12):1479-1486, 2016.
62. Rossen NG, MacDonald JK, de Vries EM, D'Haens GR, de Vos WM, Zoetendal EG, et al. Fecal microbiota transplantation as novel therapy in gastroenterology: A systematic review. World J Gastroenterol 21(17):5359-5371, 2015.
63. Kang Y, Cai Y. Future prospect of faecal microbiota transplantation as a potential therapy in asthma. Allergol Immunopathol (Madr) 46(3):307-309, 2018.
64. Vázquez-Baeza Y, Callewaert C, Debelius J, Hyde E, Marotz C, Morton JT, et al. Impacts of the Human Gut Microbiome on Therapeutics. Annu Rev Pharmacol Toxicol 58(1):253-270, 2018.
65. Desrosiers M, Pereira Valera FC. Brave New (Microbial) World: implications for nasal and sinus disorders. Braz J Otorhinolaryngol 85:675-677, 2019.
66. Aziz RK, Saad R, Rizkallah MR. Pharmaco microbiomics or how bugs modulate drugs: an educational initiative to explore the effects of human microbiome on drugs. BMC Bioinformatics 12(7):1-2, 2011.
67. Sharma A, Buschmann MM, Gilbert JA. Pharmacomicrobiomics: The Holy Grail to variability in drug response? Clin Pharmacol Ther 106(2):317-328, 2019.
68. Dou J, Bennett MR. Synthetic biology and the gut microbiome. Biotechnol J 13(5):1700159, 2018.
69. Ruder WC, Lu T, Collins JJ. Synthetic biology moving into the clinic. Science 333(6047):1248-1252, 2011.
70. Zhou Z, Chen X, Sheng H, Shen X, Sun X, Yan Y, et al. Engineering probiotics as living diagnostics and therapeutics for improving human health. Microb Cell Fact 19(1):1-12, 2020.
71. McCoubrey LE, Elbadawi M, Orlu M, Gaisford S, Basit AW. Harnessing machine learning for development of microbiome therapeutics. Gut microbe 13(1):e1872323, 2021.
72. Singhal A, Roy D, Mittal S, Dhar J, Singh A. A New Computational Approach to Identify Essential Genes in Bacterial Organisms Using Machine Learning. In: Verma, N., Ghosh, A. (eds) Computational Intelligence: Theories, Applications and Future Directions - Advances in Intelligent Systems and Computing. Springer, Singapore; pp. 67-79; 2019.
73. Khaledi A, Weimann A, Schniederjans M, Asgari E, Kuo T, Oliver A, et al. Predicting antimicrobial resistance in Pseudomonas aeruginosa with machine learning?enabled molecular diagnostics. EMBO Mol Med 12(3):e10264, 2020.
74. Lee MW, de Anda J, Kroll C, Bieniossek C, Bradley K, Amrein KE, et al. How do cyclic antibiotics with activity against Gram-negative bacteria permeate membranes? A machine learning informed experimental study. Biochim Biophys Acta Biomembr 1862(8):183302, 2020.
75. Song W, Anselmo AC, Huang L. Nanotechnology intervention of the microbiome for cancer therapy. Nat Nanotechnol 14(12):1093-1103, 2019.
76. Capel AJ, Rimington RP, Lewis MP, Christie SDR. 3D printing for chemical, pharmaceutical and biological applications. Nat Rev Chem 2(12):422-436, 2018.
77. Federici S, Nobs SP, Elinav E. Phages and their potential to modulate the microbiome and immunity. Cell Mol Immunol 18(4):889-904, 2021.
78. Claesen J, Fischbach MA. Synthetic microbes as drug delivery systems. ACS Synth Biol 4(4):358-364, 2015.


 
 
 
 
 
 
 
 
 
 
 
 
Está expresamente prohibida la redistribución y la redifusión de todo o parte de los contenidos de la Sociedad Iberoamericana de Información Científica (SIIC) S.A. sin previo y expreso consentimiento de SIIC.
ua31618