GENETICA DEL HIPOTIROIDISMO CONGENITO




Artículos relacionadosArtículos relacionadosArtículos relacionados
Artículos afines de siicsalud publicados en los últimos 4 meses
CONSECUENCIAS EPIGENÉTICAS DE LAS VARIANTES GENÉTICAS ASOCIADAS CON EL TRASTORNO BIPOLAR
Frontiers in Psychiatry 14(1115924):1-7
Difundido en siicsalud: 19 nov 2023

GENETICA DEL HIPOTIROIDISMO CONGENITO

(especial para SIIC © Derechos reservados)
El estudio de la genética molecular pone de manifiesto que, en el futuro, aportará datos importantes en cuanto a la identificación de nuevas mutaciones y asociaciones con fenotipos clínicos que podrían relacionarse con el hipotiroidismo congénito, para, de esta manera, potenciar el diagnóstico y tratamiento.
Autor:
Alberto Bustillos
Columnista Experto de SIIC

Institución:
Universidad Técnica de Ambato


Artículos publicados por Alberto Bustillos
Artículo comentado
Claudia M. Melillo
Bioquímica de planta permanente, Instituto Médico Mater Dei
Coautores
Fernanda Marizande* Alicia Zavala Calahorrano* 
Médica, Universidad Técnica de Ambato, Ambato, Ecuador*

Resumen
Se realizó una revisión narrativa sobre la genética del hipotiroidismo congénito (HC). Se utilizaron las bases de datos Medline/PubMed, LILACS-BIREME y SciELO. Se identificaron los estudios originales publicados entre 2000 y agosto de 2020. Las palabras clave utilizadas durante la búsqueda fueron las siguientes: "hipotiroidismo congénito (congenital hypothyroidism)", "genética (genetic)", "polimorfismos de nucleótido único (SNP) (single polymorphisms nucleotid)". Se revisaron 58 estudios originales que informan las bases moleculares del HC. Se ha definido el concepto básico del HC, así como las bases moleculares que están asociados con la aparición de dicho trastorno. La revisión de la literatura ha permitido identificar al menos 12 genes que codifican las proteínas, las cuales, al producirse mutaciones, están implicadas en el HC. De los 12 genes informados que desempeñan un papel importante en el HC, errores en 6 genes se han vinculado con el HC con disgenesia tiroidea, lo cual implica alteraciones en la morfogénesis de la glándula tiroides, mientras que mutaciones en otros 6 genes se han asociado con dishormonogénesis, que genera un bloqueo total o parcial de los procesos bioquímicos implicados en la síntesis y secreción de hormonas tiroideas. La prevalencia en Sudamérica varía aproximadamente desde 1 por cada 1170 hasta 1 por cada 8285 neonatos. El estudio de la genética molecular pone de manifiesto que, en el futuro, aportará datos importantes en cuanto a la identificación de nuevas mutaciones y asociaciones con fenotipos clínicos que podrían relacionarse con el HC, para, de esta manera, potenciar el diagnóstico y tratamiento.

Palabras clave
hipotiroidismo congénito, genes, epidemiología, terapéutica, genética


Artículo completo

(castellano)
Extensión:  +/-7.1 páginas impresas en papel A4
Exclusivo para suscriptores/assinantes

Abstract
A narrative review was conducted on the genetics of congenital hypothyroidism. The Medline/PubMed, LILACS-BIREME, and SciELO databases were used. Original studies published between 2000 and August 2020 were identified. The keywords used during the search were as follows: "congenital hypothyroidism", "genetics", "polymorphisms SNPs". Fifty-eight original studies reviewing the molecular basis of congenital hypothyroidism were reviewed. The basic concept of congenital hypothyroidism has been defined as well as the molecular bases that are associated with the development of this disorder. The literature review has identified at least 12 genes encoding proteins that, when mutations occur, are involved in congenital hypothyroidism. Of the 12 genes reported to play an important role in congenital hypothyroidism, errors in 6 genes have been associated with congenital hypothyroidism with thyroid dysgenesis, which implies alterations in the morphogenesis of the thyroid gland. On the other hand, mutations in 6 other genes have been associated with dyshormonogenesis that generates a total or partial blockage of the biochemical processes involved in the synthesis and secretion of thyroid hormones. The prevalence in South America is reported to vary from approximately 1 per 1000 to 1 per 8000 newborns. The study of molecular genetics shows that in the future it will contribute to the identification of new mutations and associations with clinical phenotypes that could be related to congenital hypothyroidism, thus enhancing diagnosis and treatment.

Key words
congenital hypothyroidism, genes, epidemiology, therapeutics, genetics


Clasificación en siicsalud
Artículos originales > Expertos de Iberoamérica >
página   www.siicsalud.com/des/expertocompleto.php/

Especialidades
Principal: Endocrinología y Metabolismo, Genética Humana
Relacionadas: Bioquímica, Epidemiología



Comprar este artículo
Extensión: 7.1 páginas impresas en papel A4

file05.gif (1491 bytes) Artículos seleccionados para su compra



Enviar correspondencia a:
Alberto Bustillos, 180101, Calderon de la Barca 0250, Ambato, Ecuador
Bibliografía del artículo
1. Patil N, Rehman A, Jialal I. Hypothyroidism. In Treasure Island (FL); 2020.
2. Queiruga G, Vázquez J, Garlo P, Franca K, Soria A, Pacheco A, Corbo L. Hipotiroidismo congénito, un tema vigente: ¿Qué pasa con prematuros y gemelares? Arch Pediatr Urug 84(4):281-284, 2013.
3. Szinnai G. Clinical genetics of congenital hypothyroidism. Endocr Dev 26:60-78, 2014.
4. Toublanc JE. Comparison of epidemiological data on congenital hypothyroidism in Europe with those of other parts in the world. Horm Res 38(5-6):230-235, 1992.
5. Albisu Aparicio MA, Ares Segura S, Pérez Yuste P, Rodríguez Arnao MD, Mayayo Dehesa E. Hipotiroidismo Congénito. Guías Diagnóstico-Terapéuticas en Endocrinología Pediátrica. Libro consenso Endocrinol Pediátrica la SEEP [Internet]. 2015. Disponible en: http://www.seep.es/
6. Narumi S, Araki S, Hori N, Muroya K, Yamamoto Y, Asakura Y, et al. Functional characterization of four novel PAX8 mutations causing congenital hypothyroidism: new evidence for haploinsufficiency as a disease mechanism. Eur J Endocrinol 167(5):625-632, 2012.
7. Clifton-Bligh RJ, Wentworth JM, Heinz P, Crisp MS, John R, Lazarus JH, et al. Mutation of the gene encoding human TTF-2 associated with thyroid agenesis, cleft palate and choanal atresia. Nat Genet 19(4):399-401, 1998.
8. Dentice M, Cordeddu V, Rosica A, Ferrara AM, Santarpia L, Salvatore D, et al. Missense mutation in the transcription factor NKX2-5: a novel molecular event in the pathogenesis of thyroid dysgenesis. J Clin Endocrinol Metab 91(4):1428-1433, 2006.
9. Biben C, Weber R, Kesteven S, Stanley E, McDonald L, Elliott DA, et al. Cardiac septal and valvular dysmorphogenesis in mice heterozygous for mutations in the homeobox gene Nkx2-5. Circ Res 87(10):888-895, 2000.
10. Fagman H, Nilsson M. Morphogenetics of early thyroid development. J Mol Endocrinol 46(1):R33-42, 2013.
11. Castanet M, Park S-M, Smith A, Bost M, Léger J, Lyonnet S, et al. A novel loss-of-function mutation in TTF-2 is associated with congenital hypothyroidism, thyroid agenesis and cleft palate. Hum Mol Genet 11(17):2051-2059, 2002.
12. Tonacchera M, Banco M, Lapi P, Di Cosmo C, Perri A, Montanelli L, et al. Genetic analysis of TTF-2 gene in children with congenital hypothyroidism and cleft palate, congenital hypothyroidism, or isolated cleft palate. Thyroid 14(8):584-588, 2004.
13. Acebrón A, Aza-Blanc P, Rossi DL, Lamas L, Santisteban P. Congenital human thyroglobulin defect due to low expression of the thyroid-specific transcription factor TTF-1. J Clin Invest 96(2):781-785, 1995.
14. Devriendt K, Vanhole C, Matthijs G, de Zegher F. Deletion of thyroid transcription factor-1 gene in an infant with neonatal thyroid dysfunction and respiratory failure. N Engl J Med 338(18):1317-1318, 19098.
15. Pohlenz J, Dumitrescu A, Zundel D, Martiné U, Schönberger W, Koo E, et al. Partial deficiency of thyroid transcription factor 1 produces predominantly neurological defects in humans and mice. J Clin Invest 109(4):469-473, 2002.
16. Krude H, Schütz B, Biebermann H, von Moers A, Schnabel D, Neitzel H, et al. Choreoathetosis, hypothyroidism, and pulmonary alterations due to human NKX2-1 haploinsufficiency. J Clin Invest 109(4):475-480, 2002.
17. Doyle DA, Gonzalez I, Thomas B, Scavina M. Autosomal dominant transmission of congenital hypothyroidism, neonatal respiratory distress, and ataxia caused by a mutation of NKX2-1. J Pediatr 145(2):190-193, 2004.
18. Dimitri P, Habeb AM, Gurbuz F, Millward A, Wallis S, Moussa K, et al. Expanding the clinical spectrum associated with GLIS3 mutations. J Clin Endocrinol Metab 100(10):E1362-1369, 2015.
19. Vassart G, Parmentier M, Libert F, Dumont J. Molecular genetics of the thyrotropin receptor. Trends Endocrinol Metab 2(4):151-156, 1991.
20. Sunthornthepvarakul T, Gottschalk ME, Hayashi Y, Refetoff S. Brief report: resistance to thyrotropin caused by mutations in the thyrotropin-receptor gene. N Engl J Med 332(3):155-160, 1995.
21. Alberti L, Proverbio MC, Costagliola S, Romoli R, Boldrighini B, Vigone MC, et al. Germline mutations of TSH receptor gene as cause of nonautoimmune subclinical hypothyroidism. J Clin Endocrinol Metab 87(6):2549-2555, 2002.
22. Knobel M, Medeiros-Neto G. An outline of inherited disorders of the thyroid hormone generating system. Thyroid 13(8):771-801, 2003.
23. Rodrigues C, Jorge P, Soares JP, Santos I, Salomão R, Madeira M, et al. Mutation screening of the thyroid peroxidase gene in a cohort of 55 Portuguese patients with congenital hypothyroidism. Eur J Endocrinol 152(2):193-198, 2005.
24. Agrawal P, Ogilvy-Stuart A, Lees C. Intrauterine diagnosis and management of congenital goitrous hypothyroidism. Ultrasound Obstet Gynecol Off J Int Soc Ultrasound Obstet Gynecol 19(5):501-505, 2002.
25. Targovnik HM, Esperante SA, Rivolta CM. Genetics and phenomics of hypothyroidism and goiter due to thyroglobulin mutations. Mol Cell Endocrinol 322(1-2):44-55, 2010.
26. Maruo Y, Takahashi H, Soeda I, Nishikura N, Matsui K, Ota Y, et al. Transient congenital hypothyroidism caused by biallelic mutations of the dual oxidase 2 gene in Japanese patients detected by a neonatal screening program. J Clin Endocrinol Metab 93(11):4261-4267, 2008.
27. Moreno JC, Visser TJ. New phenotypes in thyroid dyshormonogenesis: hypothyroidism due to DUOX2 mutations. Endocr Dev 10:99-117, 2007.
28. Moreno JC, Bikker H, Kempers MJE, van Trotsenburg ASP, Baas F, de Vijlder JJM, et al. Inactivating mutations in the gene for thyroid oxidase 2 (THOX2) and congenital hypothyroidism. N Engl J Med 347(2):95-102, 2002.
29. Moreno JC, Klootwijk W, van Toor H, Pinto G, D'Alessandro M, Lèger A, et al. Mutations in the iodotyrosine deiodinase gene and hypothyroidism. N Engl J Med 358(17):1811-1818, 2008.
30. Afink G, Kulik W, Overmars H, de Randamie J, Veenboer T, van Cruchten A, et al. Molecular characterization of iodotyrosine dehalogenase deficiency in patients with hypothyroidism. J Clin Endocrinol Metab 93(12):4894-4901, 2008.
31. Hirsch HJ, Shilo S, Spitz IM. Evolution of hypothyroidism in familial goitre due to deiodinase deficiency: report of a family and review of the literature. Postgrad Med J 62(728):477-480, 1986.
32. Ieiri T, Cochaux P, Targovnik HM, Suzuki M, Shimoda S, Perret J, et al. A 3' splice site mutation in the thyroglobulin gene responsible for congenital goiter with hypothyroidism. J Clin Invest 88(6):1901-1905, 1991.
33. Cortés JMR, Zerón HM. Genetics of thyroid disorders. Folia Med (Plovdiv) 61(2):172-179, 2019.
34. Targovnik HM, Citterio CE, Rivolta CM. Thyroglobulin gene mutations in congenital hypothyroidism. Horm Res Paediatr 75(5):311-321, 2011.
35. Tomer Y, Greenberg DA, Concepcion E, Ban Y, Davies TF. Thyroglobulin is a thyroid specific gene for the familial autoimmune thyroid diseases. J Clin Endocrinol Metab 87(1):404-407, 2002.
36. Everett LA, Glaser B, Beck JC, Idol JR, Buchs A, Heyman M, et al. Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS). Nat Genet 17(4):411-422, 1997.
37. Busi M, Castiglione A, Taddei Masieri M, Ravani A, Guaran V, Astolfi L, et al. Novel mutations in the SLC26A4 gene. Int J Pediatr Otorhinolaryngol 76(9):1249-1254, 2012.
38. Chen J, Wei Q, Yao J, Qian X, Dai Y, Yang Y, et al. Identification of two heterozygous deafness mutations in SLC26A4 (PDS) in a Chinese family with two siblings. Int J Audiol 52(2):134-138, 2013.
39. Pohlenz J, Rosenthal IM, Weiss RE, Jhiang SM, Burant C, Refetoff S. Congenital hypothyroidism due to mutations in the sodium/iodide symporter. Identification of a nonsense mutation producing a downstream cryptic 3' splice site. J Clin Invest 101(5):1028-1035, 1998.
40. Soler Arias EA, Castillo VA, Garcia JD, Fyfe JC. Congenital dyshormonogenic hypothyroidism with goiter caused by a sodium/iodide symporter (SLC5A5) mutation in a family of Shih-Tzu dogs. Domest Anim Endocrinol 65:1-8, 2018;
41. Targovnik HM, Citterio CE, Rivolta CM. Iodide handling disorders (NIS, TPO, TG, IYD). Best Pract Res Clin Endocrinol Metab 31(2):195-212, 2017.
42. Nicholas AK, Serra EG, Cangul H, Alyaarubi S, Ullah I, Schoenmakers E, et al. Comprehensive screening of eight known causative genes in congenital hypothyroidism with gland-in-situ. J Clin Endocrinol Metab 101(12):4521-4531, 2016.
43. Fan X, Fu C, Shen Y, Li C, Luo S, Li Q, et al. Next-generation sequencing analysis of twelve known causative genes in congenital hypothyroidism. Clin Chim Acta 468:76-80, 2017.
44. Liu S, Chai J, Zheng G, Li H, Lu D, Ge Y. Screening of HHEX mutations in Chinese children with thyroid dysgenesis. J Clin Res Pediatr Endocrinol 8(1):21-25, 2016.
45. Roche DG, Danielis Y, Herrera M, Elizabeth C, Angela L, Temprana D, et al. Detección temprana de hipotiroidismo congénito y fenilcetonuria a través del cribado neonatal en el estado Cojedes. Arch Venez Pueric Pediatr 79(1):3-7, 2016.
46. Ojeda-Rincón SA, Gualdrón-Rincón ÉF, Sarmiento-Villamizar DF, Parada-botello NS, Rubio-Guerrero GR. Retraso mental prevenible?: Un desafío para la medicina preventiva. Méd UIS 29(1):53-60, 2016.
47. Ortiz Rubio A, Villacís Guerrero B, Jara Muñoz E, Narváez Olalla A, Prócel Egüez P. Evaluación del desempeño del Programa Nacional de Tamizaje Metabólico Neonatal del Ministerio de Salud Pública del Ecuador. Enero a noviembre 2014. Rev Ecuat Med Eugenio Espejo 4(5):27-34, 2015.
48. Huerta-Sáenz L, Del Águila C, Espinoza O, Falen-Boggio J, Mitre N. Tamizaje nacional unificado de hipotiroidismo congénito en el Perú: un programa inexistente. Rev Peru Med Exp Salud Pública 32(3)579-585, 2015.
49. Grob L F, Martínez-Aguayo A. Hipotiroidismo congénito: un diagnóstico que no debemos olvidar. Rev Chil Pediatr 83(5):482-491, 2012.
50. Testa G, Signorino M, Soberero G, Boyanovsky A, Collet I, Muñoz L, et al. Etiología y evolución de recién nacidos con hipotiroidismo congénito y glándula eutópica. Rev Argent Endocrinol Metab 55(1):30-39, 2018.
51. Hoyos D, Ortiz L, Jijena JM, Justiniano F, Frias M, Cuenca S, et al. Recién nacidos en el hospital regional San Juan de Dios y Hospital Obrero N° 7 C.N.S. Tarija, Bolivia. Ventana Científica 1(4):27-34, 2012.
52. Borrajo GJC. Newborn screening in Latin America at the beginning of the 21st century. J Inherit Metab Dis 30(4):466-481, 2007.
53. LaFranchi SH. Newborn screening strategies for congenital hypothyroidism: an update. J Inherit Metab Dis 33(Suppl 2):S225-233, 2010.
54. Smith I, Fuggle PW, Tokar S, Chapple J. Congenital hypothyroidism detected by neonatal screening: relationship between biochemical severity and early clinical features. Arch Dis Child 67(1):87-90, 1992.
55. Grüters A, Krude H. Detection and treatment of congenital hypothyroidism. Nat Rev Endocrinol 8(2):104-113, 2011.
56. Dimitropoulos A, Molinari L, Etter K, Torresani T, Lang-Muritano M, Jenni OG, et al. Children with congenital hypothyroidism: long-term intellectual outcome after early highdose treatment. Pediatr Res 6(2):242-248, 2009.
57. Léger J, Olivieri A, Donaldson M, Torresani T, Krude H, van Vliet G, et al. European Society for Paediatric Endocrinology consensus guidelines on screening, diagnosis, and management of congenital hypothyroidism. J Clin Endocrinol Metab 99(2):363-384, 2014.
58. Bongers-Schokking JJ, de Muinck Keizer-Schrama SM. Influence of timing and dose of thyroid hormone replacement on mental, psychomotor, and behavioral development in children with congenital hypothyroidism. J Pediatr 147(6):768-774, 2005.

 
 
 
 
 
 
 
 
 
 
 
 
Está expresamente prohibida la redistribución y la redifusión de todo o parte de los contenidos de la Sociedad Iberoamericana de Información Científica (SIIC) S.A. sin previo y expreso consentimiento de SIIC.
ua31618