REVISION DE LOS MODELOS MURINOS DE HIPERTENSION EXPERIMENTAL





REVISION DE LOS MODELOS MURINOS DE HIPERTENSION EXPERIMENTAL

(especial para SIIC © Derechos reservados)
La hipertensión es un trastorno multifactorial, lo que da lugar a que exista un gran número de modelos experimentales, tanto de su variedad genética como, en su mayor parte, inducidos por diferentes procedimientos: quirúrgicos, farmacológicos, metabólicos, y manipulados genéticamente.
Autor:
Guadalupe Baños
Columnista Experto de SIIC

Institución:
Instituto Nacional de Cardiología "Ignacio Chávez"


Artículos publicados por Guadalupe Baños
Coautores
Israel Pérez-Torres* Mohammed El Hafidi** 
Ph.D. Investigador Asociado, Instituto Nacional de Cardiología "Ignacio Chávez", Tlalpan, México*
Ph.D. Investigador Titular, Instituto Nacional de Cardiología "Ignacio Chávez", Tlalpan, México**
Recepción del artículo
21 de Mayo, 2008
Aprobación
9 de Junio, 2008
Primera edición
3 de Diciembre, 2008
Segunda edición, ampliada y corregida
7 de Junio, 2021

Resumen
El estudio de la hipertensión se ha realizado en una gran variedad de modelos así como en diferentes especies. Entre éstas quizá las más comunes son las de roedores, la rata y el ratón, no solamente por el relativo bajo costo de su mantenimiento y facilidad de manejo, sino porque frecuentemente el cuadro patológico que desarrollan es muy similar al que se observa en los humanos. Se revisan algunos resultados obtenidos con el uso de modelos en experimentos realizados en nuestro laboratorio, así como datos recientes de otros autores.

Palabras clave
hipertensión experimental, modelos en roedores


Artículo completo

(castellano)
Extensión:  +/-8.47 páginas impresas en papel A4
Exclusivo para suscriptores/assinantes

Abstract
Hypertension studies have been carried out in a large variety of models and animal species. Probably the most commonly model used is rodents, rat or mice, not only on account of their comparatively low maintenance cost and easy handling, but also because the pathology observed in these animals is similar to the one observed in humans. Some results obtained from experiments carried out in this laboratory using those models, as well as from other researchers, are reviewed in this work.

Key words
experimental hypertension, rodent models


Clasificación en siicsalud
Artículos originales > Expertos de Iberoamérica >
página   www.siicsalud.com/des/expertocompleto.php/

Especialidades
Principal: Cardiología
Relacionadas: Diabetología, Educación Médica, Endocrinología y Metabolismo, Farmacología, Genética Humana, Medicina Farmacéutica, Medicina Interna, Medicina Veterinaria



Comprar este artículo
Extensión: 8.47 páginas impresas en papel A4

file05.gif (1491 bytes) Artículos seleccionados para su compra



Enviar correspondencia a:
Guadalupe Baños, Instituto Nacional de Cardiología "Ignacio Chávez", 14080, Juan Badiano 1. Col. Sección XVI, Tlalpan, México
Patrocinio y reconocimiento:
Este trabajo recibió apoyo parcial del Consejo Nacional de Ciencia y Tecnología (CONACyT) de México; proyecto Nº 53617, otorgado a GB.
Bibliografía del artículo
1. Kiprov D. Experimental models of hypertension. Cor Vasa 22(1-2):116-128, 1980.
2. Sun ZJ, Zhang ZE. Historic perspectives and recent advances in major animal models of hypertension. Acta Pharmacol Sin 26(3):295-301, 2005.
3. Baños G, El Hafidi M. En: Hypertension New Research. Chapter 1: Models of Experimental Hypertension. Pp 1-46. Ed. E. F. Benhagen. Nova Science Publishers, Inc. 2005.
4. Orange SJ, Ledingham JM, Laverty R. Cardiovascular effects of chronic nitric oxide inhibition in genetically hypertensive rats. Clin Exper Pharmacol Physiol 27(7):488-493, 2000.
5. Hamlyn JM. Acquired and inherited forms of ouabain-induced hypertension: significance and relationship to other models. Clin Exper Hypertens 25:289-290, 2003.
6. Swei A, Lacy F, DeLano FA, Schmid-Schönbein GW. Oxidative stress in the Dahl hypertensive rat. Hypertension 30:1628-1633, 1997.
7. Kurtz TW, Morris RC. Hypertension in the recently weaned Dahl salt-sensitive rat despite a diet deficient in sodium chloride. Science 230:808-810, 1985.
8. Hirata Y, Tobian L, Simon G, Iwai J. Hypertension-producing factor in serum of hypertensive Dahl salt-sensitive rats. Hypertension 6:709-716, 1984.
9. Jain M, Liao R, Podesser BK, Ngoy S, Apstein CS, Eberli FR. Influence of gender in the response to hemodynamic overload after myocardial infarction. Am J Physiol 283:H2544-H2550, 2002.
10. Seki S, Nagai M, Takeda H y cols. Impaired Ca2+ handling in perfused hypertrophic hearts from Dahl salt-sensitive rats. Hypertens Res 26:643-653, 2003.
11. Manning RD, Meng S, Tian N. Renal and vascular oxidative stress and salt-sensitivity of arterial pressure. Acta Physiol Scand 179:243-250, 2003.
12. Vokurkova M, Dobesová Z, Pechánová O, Kunes J, Zicha J. Erythrocyte ion transport and membrane lipid composition in young and adult rats with NO-deficient hypertension. Life Sci 73(13):1637-1644, 2003.
13. Majid DS, Kopkan L. Nitric oxide and superoxide interactions in the kidney and their implication in the development of salt-sensitive hypertension. Clin Exp Pharmacol Physiol 34(9):946-952, 2007.
14. Stolba P, Dobesová Z, Husek P y cols. The hypertriglyceridemic rat as a genetic model of hypertension and diabetes. Life Sci 51(10):733-740, 1992.
15. Kunes J, Devynck MA, Zicha J. Chronic changes in plasma triglyceride levels do modify platelet membrane microviscosity in rats. Life Sci 67(8):959-967, 2000.
16. Heller J, Hellerová S, Dobesová Z. The Prague hypertensive rat: a new model of genetic hypertension. Clin Exp Hypertens 15(5):807-818, 1993.
17. Friedman J, Peleg E, Kagan T. Shnizer S, Rosenthal T. Oxidative stress in hypertensive, diabetic, and diabetic hypertensive rats. Am J Hypertens 16(12):1049-1052, 2003.
18. Younis F, Kariv N, Nachman R, Zangen S, Rosenthal T. Telmisartan in the treatment of Cohen-Rosenthal Diabetic Hypertensive rats: the benefit of PPAR-gamma agonism. Clin Exp Hypertens 29(6):419-426, 2007.
19. Ojeda NB, Grigore D, Yanes LL y cols. Testosterone contributes to marked elevations in mean arterial pressure in adult male intrauterine growth restricted offspring. Am J Physiol Regul Integr Comp Physiol 292(2):R758-763, 2007.
20. Ojeda NB, Grigore D, Robertson EB, Alexander BT. Estrogen protects against increased blood pressure in postpubertal female growth restricted offspring. Hypertension 50(4):679-685, 2007.
21. Brown DM, Provoost AP, Daly MJ, Jacob HJ. Renal disease susceptibility and hypertension are under independent genetic control in the fawn-hooded rat. Nature Genet 12(1):44-51, 1996.
22. Koletsky S. Obese spontaneously hypertensive rats--a model for study of atherosclerosis. Exp Mol Pathol 19(1):53-60, 1973.
23. Phillips JK, Hopwood D, Loxley RA y cols. Temporal relationship between renal cyst development, hypertension and cardiac hypertrophy in a new rat model of autosomal recessive polycystic kidney disease. Kidney Blood Press Res 30(3):129-144, 2007.
24. Zhou X, Frohlich ED. Analogy of cardiac and renal complications in essential hypertension and aged SHR or L-NAME/SHR. Med Chem 3(1):61-65, 2007.
25. Polizio AH, Gorzalczany S, Taira C, Peña C.Aortic coarctation induces oxidative stress in rat tissues. Life Sci 79(6):596-600, 2006.
26. Kobori H, Nangaku M, Navar LG, Nishiyama A. The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev 59(3):251-287, 2007.
27. Park HW, Kim Y, Kim KH, Jeong HJ, Shin MH, Rozen S, Mauer M. Angiotensin II receptor blockade blocker pre-treatment largely prevents injury from gradual renal ablation in rats. J Renin Angiotensin Aldosterone Syst 8(3):110-117, 2007.
28. Takahashi T, Konta T, Takasaki S, Ichikawa K, Takeishi Y, Kubota I. An angiotensin II type-I receptor blocker, olmesartan medoxomil, attenuates lipid peroxidation in renal injury induced by subtotal nephrectomy. Clin Exp Nephrol 11(3):202-208, 2007.
29. Welch WJ, Patel K, Modlinger P y cols. Roles of vasoconstrictor prostaglandins, COX-1 and -2, and AT1, AT2, and TP receptors in a rat model of early 2K,1C hypertension. Am J Physiol Heart Circ Physiol 293(5):H2644-H2649, 2007.
30. Fink G, Li M, Lau Y, Osborn J, Watts S. Chronic activation of endothelin B receptors: new model of experimental hypertension. Hypertension 50(3):512-518, 2007.
31. Xue B, Johnson AK, Hay M.Sex differences in angiotensin II- induced hypertension. Braz J Med Biol Res 40(5):727-734, 2007.
32. Baños G, Carvajal K, Cardoso G, Zamora J, Franco M. Vascular reactivity and effect of serum in a rat model of hypertriglyceridemia and hypertension. Am J Hypertens 10:379-388, 1997.
33. El Hafidi M, Valdez R, Baños G. Possible relationship between altered fatty acid composition of serum, platelets and aorta and hypertension induced by sugar feeding in rats. Clin Exper Hypertens 22(1):99-108, 2000.
34. Nava P, Guarner V, Posadas R, Pérez I, Baños G. Insulin-induced endothelin release and vasoreactivity in hypertriglyceridemic and hypertensive rats. Am J Physiol 277:H399-H404, 1999.
35. Perez TI, El Hafidi M, Carvajal K, Baños G. Castration modifies aortic vasoreactivity and serum fatty acids in a sucrose-fed rat model of metabolic syndrome. Heart & Vessels 2008 (in press).
36. El Hafidi M, Baños G. In vivo plasma lipid oxidation in sugar-induced rat hypertriglyceridemia and hypertension. Hypertension 30(part 2):624-628, 1997.
37. Carvajal K, Baños G, Moreno Sánchez R. Impairment of glucose metabolism and energy transfer in the hypertriglyceridemic rat heart. Mol Cell Biochem 249:157-165, 2003.
38. Baños G, Medina Campos OE, Maldonado PD y cols. Antioxidant enzymes in hypertensive and hypertriglyceridemic rats. Effect of gender. Clin Exper Hypertens 1:45-56, 2005.
39. Baños G, Medina ON, Maldonado PD y cols. Activities of antioxidant enzymes in two stages of pathology development in sucrose-fed rats. Can J Physiol Pharmacol 83(3):278-286, 2005.
40. Cárdenas G, Torres JC, Zamora J, Baños G. Isolated heart function during ischemia and reperfusion in sucrose-fed rats. Effect of insulin infusion. Cardiovascular Pathology 14:256-264, 2005.
41. Cárdenas G, Torres JC, Zamora J, Pérez I, Baños G. Isolated heart function after ischemia and reperfusion in sucrose-fed rats. Influence of gender and treatment. Clin Exper Hypertens 28(2):85-107, 2006.
42. Rubio ME, Baños G, Díaz E, Guarner V. Effect of age on insulin-induced endothelin release and vasoreactivity in hypertriglyceridemic and hypertensive rats. Experimental Gerontology 41(3):282-288, 2006.
43. El Hafidi M, Pérez I, Carrillo S, Cardoso G, Zamora J, Baños G. Effect of sex hormones on non-esterified fatty acids, intra-abdominal fat accumulation, and hypertension induced by sucrose diet in male rats. Clin Exp Hypertens 28(8):669-681, 2006.
44. El Hafidi M, Pérez I, Zamora J, Soto V, Carvajal-Sandoval G, Baños G. Glycine intake decreases plasma free fatty acids, adipose cell size, and blood pressure in sucrose-fed rats. Am J Physiol Regul Integr Comp Physiol 287:R1387-R1393, 2004.
45. El Hafidi M, Pérez I, Baños G. Is glycine effective against elevated blood pressure? Curr Opin Clin Nutr Metab Care 9:26-31, 2006.
46. El Hafidi M, Pérez I, Carrillo S, Cardoso G, Zamora J, Baños G. Effect of sex hormones on non-esterified fatty acids, intra-abdominal fat accumulation and hypertension induced by sucrose diet in male rats. Clin Exper Hypertens 28:1-13, 2006.
47. Pérez Torres I, El Hafidi M, Zamora GJ, Infante O, Baños G. Modulation of aortic vascular reactivity by sex hormones in a male rat model of metabolic syndrome. Life Sci 80:2170-2180, 2007.
48. Pérez Torres I, El Hafidi M, Infante O, Baños G. Effects of sex hormone levels on aortic vascular reactivity and variables associated with the metabolic syndrome in sucrose-fed female rats. Can J Physiol Pharmacol 86(1-2):25-35, 2008.
49. Bull TM, Coldren CD, Geraci MW, Voelkel NF.Gene expression profiling in pulmonary hypertension. Proc Am Thorac Soc 4(1):117-120, 2007.
50. Sullivan CC, Du L, Chu D y cols. Induction of pulmonary hypertension by an angiopoietin 1/TIE2/serotonin pathway.Proc Natl Acad Sci USA 100(21):12331-12336, 2003.
51. Chu D, Sullivan CC, Du L y cols. A new animal model for pulmonary hypertension based on the overexpression of a single gene, angiopoietin. Ann Thorac Surg 77(2):449-456, 2004.
52. Kolettis T, Vlahos AP, Louka M y cols. Characterisation of a rat model of pulmonary arterial hypertension. Hellenic J Cardiol 48(4):206-210, 2007.
53. Cook S, Hugli O, Egli M y cols. Partial gene deletion of endothelial nitric oxide synthase predisposes to exaggerated high-fat diet-induced insulin resistance and arterial hypertension. Diabetes 53(8):2067-2072, 2004.
54. Qi NR, Wang J, Zidek V y cols. A new transgenic rat model of hepatic steatosis and the metabolic syndrome. Hypertension 45(5):1004-1011, 2005.
55. Hiraoka-Yamamoto J, Nara Y, Yasui N, Onobayashi Y, Tsuchikura S, Ikeda K. Establishment of a new animal model of metabolic syndrome: SHRSP fatty (fa/fa)rats. Clin Exp Pharmacol Physiol 31(1-2):107-109, 2004.
56. Howard LL, Patterson ME, Mullins JJ, Mitchell KD. Salt-sensitive hypertension develops after transient induction of ANG II-dependent hypertension in Cyp1a1-Ren2 transgenic rats. Am J Physiol Renal Physiol 288(4):F810-F815, 2005.
57. Svenson KL, Bogue MA, Peters LL. Invited review: Identifying new mouse models of cardiovascular disease: a review of high-throughput screens of mutagenized and inbred strains. J Appl Physiol 94(4):1650-1659; discussion 1673, 2003.
58. Pravenec M, Kurtz TW. Molecular genetics of experimental hypertension and the metabolic syndrome: from gene pathways to new therapies. Hypertension 49(5):941-952, 2007.

 
 
 
 
 
 
 
 
 
 
 
 
Está expresamente prohibida la redistribución y la redifusión de todo o parte de los contenidos de la Sociedad Iberoamericana de Información Científica (SIIC) S.A. sin previo y expreso consentimiento de SIIC.
ua31618