ACTUALIZACION SOBRE EL DIAGNOSTICO DE TUMORES CARCINOIDES DEL TRACTO GASTROINTESTINAL





ACTUALIZACION SOBRE EL DIAGNOSTICO DE TUMORES CARCINOIDES DEL TRACTO GASTROINTESTINAL

(especial para SIIC © Derechos reservados)
Los estudios para el diagnóstico de tumores carcinoides gastrointestinales incluyen marcadores como la cromogranina A y 5-HIAA urinario, endoscopia, tomografía, resonancia magnética y centellograma con octreotide.
Autor:
Dimitrios Dimitroulopoulos
Columnista Experto de SIIC

Institución:
Department of Gastroenterology, ¨Agios Savvas¨ Cancer Hospital


Artículos publicados por Dimitrios Dimitroulopoulos
Recepción del artículo
26 de Mayo, 2006
Aprobación
16 de Junio, 2006
Primera edición
9 de Octubre, 2006
Segunda edición, ampliada y corregida
7 de Junio, 2021

Resumen
Los tumores carcinoides, argentafinomas, son miembros de una familia particular de tumores conocida como familia de tumores neuroendocrinos o del sistema APUD (amine precursor uptake and decarboxilation: captación y descarboxilación de precursores de aminas). Los tumores carcinoides se originan en los órganos y sistemas derivados del endodermo primitivo, pero más frecuentemente en el tracto gastrointestinal, donde representan aproximadamente la mitad de todos los tumores endocrinos gastrointestinales. Más del 95% de todos los carcinoides gastrointestinales se localizan en tres sitios: el apéndice, el recto y el intestino delgado. Independientemente de su localización, los carcinoides pueden sintetizar varios péptidos. Estos tumores pueden presentarse en diferentes estadios patológicos con síntomas o síndromes hormonales o sin ellos, y pueden presentarse en forma esporádica o como parte de síndromes hereditarios. Su evolución clínica suele ser indolente pero también puede ser agresiva y resistente al tratamiento. Esta revisión describe el progreso realizado en el esclarecimiento de su diagnóstico clínico y de laboratorio e incluye avances recientes en genética, biología molecular, histopatología, marcadores bioquímicos, diagnóstico por imágenes radiológico y centellográfico y endoscopia de los tumores carcinoides gastrointestinales.

Palabras clave
Carcinoide, tumores neuroendocrinos, carcinoide gastrointestinal, somatostatina, octreoscan


Artículo completo

(castellano)
Extensión:  +/-11.26 páginas impresas en papel A4
Exclusivo para suscriptores/assinantes

Abstract
The carcinoid tumor, argentaffinoma, is a member of a very exclusive neoplastic family known as neuroendocrine or amine precursor uptake and decarboxylation (APUD) tumors. Carcinoids have been found to arise from almost every organ and system derived from the primitive endoderm, but most frequently originated from the gastrointestinal tract, accounting for approximately half of all gastrointestinal endocrine tumors. Over 95% of all gastrointestinal carcinoids are located in only three sites: the appendix, rectum and small intestine. Irrespectively to their location, carcinoids are capable of producing various peptides. These tumors may present at different disease stages with either hormonal or hormonal-related symptoms/syndromes, or without hormonal symptoms and may occur either sporadically or as a part of hereditary syndromes. Their clinical course is often indolent but can also be aggressive and resistant to treatment. This review provides a broad outline of progress that has been made in the elucidation of their clinical and laboratory diagnosis including recent advances in genetics, molecular biology, histopathology, biochemical markers, radiologic and scintigraphic imaging and endoscopy of gastrointestinal carcinoid tumors.

Key words
Carcinoid, neuroendocrine tumors, gastrointestinal carcinoid, somatostatin, octreoscan


Full text
(english)
para suscriptores/ assinantes

Clasificación en siicsalud
Artículos originales > Expertos del Mundo >
página   www.siicsalud.com/des/expertocompleto.php/

Especialidades
Principal: Gastroenterología
Relacionadas: Anatomía Patológica, Diagnóstico por Imágenes, Endocrinología y Metabolismo, Medicina Interna, Oncología



Comprar este artículo
Extensión: 11.26 páginas impresas en papel A4

file05.gif (1491 bytes) Artículos seleccionados para su compra



Enviar correspondencia a:
Dimitrios Dimitroulopoulos, Department of Gastroenterology, "Agios Savvas" Cancer Hospital, GR-152 34, 35 Parnassou str., Halandri, Atenas, Grecia
Bibliografía del artículo
1. Wilson JD, Braunwald E, Isselbacher KJ, Petersdorf RG, Martin JB, Fauci S, Root RK (eds). Harrison's principles of internal medicine (12th ed), New York: McGraw Hill, 1991.
2. Oberndorfer S. Karzinoid tumoren des dunndarms. Frank Z Pathol 1907; 1:426-429.
3. Gosset A, Masson P. Tumeurs endocrines de l'appendice. Presse Med 1914; 22:237-240.
4. Williams ED, Sandler M. The classification of carcinoid tumors. Lancet 1963; 1:238-239.
5. Modlin IM, Sandor A. An analysis of 8305 cases of carcinoid tumors. Cancer 1997; 79:813-829.
6. Newton JN, Swerdlow AJ, Dos Santos Silva IM et al. The epidemiology of carcinoid tumours in England and Scotland. Br J Cancer 1994; 70:939-942.
7. Lu Cortez L, Clemente C, Puig V, Mirada A. Carcinoid tumor. An analysis of 131 cases. Rev Clin Esp 1994; 194:291-293.
8. Soga J. Carcinoids of the rectum: An evaluation of 1271 reported cases. Surg Today 1997; 27:112-119.
9. Berge T, Linell F. Carcinoid tumours. Frequency in a defined population during a 12-year period. Acta Pathol Microbiol Scand [A] 1976; 84:322-330.
10. Zirbes TK, Lorenzen J, Baldus SE et al. Apoptosis and expression of bcl-2 protein are inverse factors influencing tumour cell turnover in primary carcinoid tumours of the lung. Histopathology 1998; 83:123-128.
11. Przygodzki RM, Finkelstein SD, Langer JC et al. Analysis of p53, K-ras-2 and C-raf-1 in pulmonary neuroendocrine tumors. Correlation with histological subtype and clinical outcome. Am J Pathol 1996; 148:1531-1541.
12. Dong Q, Debelenko LV, Chandrasekharappa SC et al. Loss of heterozygosity at 11q13: analysis of pituitary tumors, lung carcinoids, lipomas and other uncommon tumors in subjects with familiar multiple endocrine neoplasia type 1. J Clin Edocrinol Metab 1997; 82(5):1416-1420.
13. Debelenko LV, Brambilla E, Agarwal SK et al. Identification of MEN1 gene mutations in sporadic carcinoid tumors of the lung. Hum Mol Genet 1997; 6:2285-2290.
14. Brambilla E, Negoescu A, Gazzeri S et al. Apoptosis-related factors p53, bcl2 and bax in neuroendocrine lung tumors. Am J Pathol 1996; 149:1941-1952.
15. Werner P. Genetic aspects of adenomatosis of endocrine glands. Am J Med 1954; 16:363-371.
16. Sagara M, Sugiyama F, Horiguchi H et al. Activation of the nuclear oncogenes N-myc and c-jun in carcinoid tumors of transgenic mice carrying the human adenovirus type 12 E1 region gene. DNA Cell Biol 1995; 14:95-101.
17. Cheng JY, Sheu LF, Meng CL, Lin JC. Expression of p53 protein in colorectal carcinoids. Arch Surg 1996; 131:67-70.
18. Neary PC, Redmond PH, Houghton T, Watson GR, Bouchier-Hayes D. Carcinoid disease: review of the literature. Dis Colon Rectum 1997; 40:349-362.
19. Azzoni C, Doglioni C, Viale G et al. Involvement of bcl-2 oncoprotein in the development of enterochromaffin like cell gastric carcinoids. Am J Surg Pathol 1996; 20:433-441.
20. Caplin ME, Buscombe JR, Hilson AJ, Jones AL, Watkinson AF, Burroughs AK. Carcinoid tumour. Lancet 1998; 352(9130):799-805.
21. Jakobovitz O, Nass D, DeMarco L et al. Carcinoid tumors frequently display genetic abnormalities involving chromosome 11. J Clin Endocrinol Metab 1996; 81:3164-3167.
22. Walch AK, Zitzelsberger HF, Aubele MM et al. Typical and atypical carcinoid tumors of the lung are characterized by 11q deletions as detected by comparative genomic hybridization. Am J Pathol 1998; 153:1089-1098.
23. Debelenko LV, Zhuang Z, Emmert-Buch MR et al. Allelic deletions on chromosome 11q13 in multiple endocrine neoplasia type 1-associated and sporadic gastrinomas and pancreatic endocrine tumors. Cancer Res 1997; 57:2238-2243.
24. Tonnies H, Toliat MR, Ramel C et al. Analysis of sporadic neuroendocrine tumours of the enteropancreatic system by comparative genomic hybridization. Gut 2001; 48:536-541.
25. Kytola S, Hoog A, Nord B et al. Comparative genomic hybridization identifies less of 18q22-qter as an early and specific event in tumorigenesis of midgut carcinoids. Am J Pathol 2001; 158:1803-1808.
26. Kytola S, Nord B, Elder EE et al. Alterations of the SDHD gene locus in midgut carcinoids, Merkel cell carcinomas, pheochromocytomas and abdominal paragangliomas. Genes Chromosomes Cancer 2002; 34:325-332.
27. Modlin IM, Kidd M, Latich I, Zikusoka MN, Shapiro MD. Current status on gastrointestinal carcinoids. Gastroenterology 2005; 128: 1717-1751.
28. Lips CJ, Lentjes EG, Hoppener JW. The spectrum of carcinoid tumours and carcinoid syndromes. Ann Clin Biochem 2003; 40:612-627.
29. Capelli C, Agosti B, Braga M et al. Von Recklinghausen's neurofibromatosis associated with duodenal somatostatinoma. A case report and review of the literature. Minerva Endocrinol 2004; 29:19-24.
30. Mayoral W, Salcedo J, Al-Kawas F. Ampullary carcinoid tumor presenting as acute pancreatitis in a patient with Recklinghausen's disease: care report and review of the literature. Endoscopy 2003; 35:854-857.
31. Vitale L, Lenzi L, Huntsman SA et al. Differential expression of alternatively spliced mRNA forms on the insulin-like growth factor 1 receptor in human neuroendocrine tumors. Oncol Rep 2006; 15: 1249-1256.
32. Van Gompel JJ, Chen H. Insulin-like growth factor 1 signaling in human gastrointestinal carcinoid tumor cells. Surgery 2004; 136:1297-1302.
33. Terris B, Scoazec JY, Rubbia L et al. Expression of vascular endothelial growth factor in digestive neuroendocrine tumours. Histopathology 1998; 32:133-138.
34. Krishnamurthy S, Dayal Y. Immunohistochemical expressions of transforming growth factor alpha and epidermal growth factor receptor in gastrointestinal carcinoids. Am J Surg Pathol 1997; 21:327-333.
35. Facco C, La Rosa S, Dionigi A, Uccella S, Riva C, Capella C. High expression of growth factors and growth factor receptors in ovarian metastases from ileal carcinoids: an immunohistochemical study of 2 cases. Arch Pathol Lab Med 1998; 122:828-832.
36. Papouchado B, Erickson LA, Rohlinger AL et al. Epidermal growth factor receptor and activated epidermal growth factor receptor expression in gastrointestinal carcinoids and pancreatic endocrine carcinomas. Mod Pathol 2005; 18:1329-1335.
37. Chaudhry A, Funa K, Oberg K. Expression of growth factor peptides and their receptors in neuroendocrine tumors of the digestive system. Acta Oncol 1993; 32:107-114.
38. Vikman S, Essand M, Cunningham JL et al. Gene expression in midgut carcinoid tumors: potential targets for immunotherapy. Acta Oncol 2005; 44:32-40.
39. Kidd M, Modlin IM, Mane SM, Camp RL, Eick J, Latich I. The role of genetic markers -NAP1L1, MAGE-D2 and MTA1- in defining small-intestinal carcinoid neoplasia. Ann Surg Oncol 2006; 13:253-262.
40. Saqi A, Alexis D, Remotti F, Bhagat G. Usefulness of CDX2 and TTF-1 in differentiating gastrointestinal from pulmonary carcinoids. Am J Clin Pathol 2005; 123:394-404.
41. Modlin IM, Kidd M, Pfragner R, Eick GN, Champaneria MC. The functional characterization of normal and neoplastic human enterochromaffin cells. J Clin Endocrinol Metab 2006; [Epub ahead of print]
42. Kunnimalaiyaan M, Traeger K, Chen H. Conservation of the Notch 1 signaling pathway in gastrointestinal carcinoid cells. Am J Physiol Gastrointest Liver Physiol 2005; 289:G636-642.
43. Kloppel G, Perren A, Heitz PU. The gastroenteropancreatic neuroendocrine cell system and its tumors: the WHO classification. Ann NY Acad Sci 2004; 1014:13-27.
44. Plockinger U, Rindi G, Arnold R et al. Guidelines for the diagnosis and treatment of neuroendocrine gastrointestinal tumours. Neuroendocrinology 2004; 80:394-424.
45. Rindi G, Azzoni C, La Rosa S et al. ECL cell tumor and poorly differentiated endocrine carcinoma of the stomach: Prognostic evaluation by pathological analysis. Gastroenterology 1999; 116:532-542.
46. Solcia E, Kloppel G, Sobin LH. Histological typing of endocrine tumours. WHO International Classification of Tumours, ed. 2. Berlin, Springer, 1999, pp 61-67.
47. Jensen R, Norton J. Carcinoid tumors and the carcinoid syndrome. In: DeVita VT, Hellman S, Rosenberg A, eds. Principles and practice of oncology, 5th ed. Philadelphia, Lippincott, 1996, pp 1704-1723.
48. Kaltsas GA, Bresser GM, Grossman AB. The diagnosis and medical management of advanced neuroendocrine tumors. Endocr Rev 2004; 25:458-511.
49. Tormey WP, FitzGerald RJ. The clinical and laboratory correlates of an increased urinary 5-hydroxyindoleacetic acid. Postgrad Med J 1995; 71:542-545.
50. Feldman J, Lee E. Serotonin content of foods: effect of urinary excretion of 5-hydroxyindoleacetic acid. Am J Clin Nutr 1985; 42:639-643.
51. Degg TJ, Allen KR, Barth JH. Measurement of plasma 5 hydroxyindoleacetic acid in carcinoid disease: an alternative to 24h urine collection. Ann Clin Biochem 2000; 37:724-726.
52. Oberg K. Biochemical diagnosis of neuroendocrine GEP tumor. Yale J Biol Med 1997; 70:501-508.
53. Tomassetti P, Migliori M, Simoni P et al. Diagnostic value of plasma chromographin A in neuroendocrine tumours. Eur J Gastroenterol Hepatol 2001; 13:55-58.
54. Stridsberg M, Oberg K, Li Q, Engstrom U, Lundqvist G. Measurements of chromographin A, chromogranin B (secretogranin I), chromogranin C (secretogranin II) and pancreastatin in plasma and urine from patients with carcinoid tumours and endocrine pancreatic tumours. J Endocrinol 1995; 144:49-59.
55. Eriksson B. Tumor markers for pancreatic endocrine tumors, including chromogranins, HCG-a and HCG-b. In: Mignon M, Jensen R, eds. Endocrine tumors of the pancreas: recent advances in research and management. Basel, Karger, 1995; 121.
56. Watson RW, Schalken JA. Future opportunities for the diagnosis and treatment of prostate cancer. Prostate Cancer Prostatic Dis 2004; 7(Suppl.1):S8-S13.
57. Granberg D, Stridsberg M, Seensalu R et al. Plasma chromographin A in patients with multiple endocrine neoplasia type 1. J Clin Endocrinol Metab 1999; 84:2712-2717.
58. Janson ET, Holmberg L, Stridsberg M et al. Carcinoid tumors: analysis of prognostic factors and survival in 301 patients from a referral center. Ann Oncol 1997; 8:685-690.
59. Nobels FR, Kwekkeboom DJ, Coopmans W et al. Chromogranin A as serum marker for neuroendocrine neoplasia: a comparison with neuronspecific enolase and the a-subunit of glycoprotein hormones. J Clin Endocr Metab1997; 82:2622-2628.
60. Eriksson B, Arnberg H, Lindgren PG et al. Neuroendocrine pancreatic tumours: clinical presentation, biochemical and histological findings in 84 patients. J Intern Med 1990; 228:103-113.
61. Nikou GC, Lygidakis NJ, Toubanakis C et al. Current diagnosis and treatment of gastrointestinal carcinoids in a series of 101 patients: the significance of serum chromographin-A, somatostatin receptor scintigraphy and somatostatin analogues. Hepatogastroenterology 2005; 52:731-741.
62. Stridsberg M, Eriksson B, Oberg K, Janson ET. A comparison between three commercial kits for chromogranin A measurements. J Endocrinol 2003; 177:337-341.
63. Kidd M, Modlin IM, Mane SM, Camp RL, Shapiro MD. Q RT-PCR detection of chromogranin A: a new standard in the identification of neuroendocrine tumor disease. Ann Surg 2006; 243:273-280.
64. Turner GB, Johnston BT, McCance DR et al. Circulating markers of prognosis and response to treatment in patients with midgut carcinoid tumours. Gut 2006; [Epub ahead of print]
65. Lauffer JM, Zhang T, Modlin IM. Current status of gastrointestinal carcinoids. Aliment Pharmacol Ther 1999; 13:271-287.
66. Shah GM, Shah RG, Veillette H, Kirkland JB, Pasieka JL, Warner RR. Biochemical assessment of niacin deficiency among carcinoid cancer patients. Am J Gastroenterol 2005; 100:2307-2314.
67. Dimitroulopoulos D, Xynopoulos D, Tsamakidis K et al. Scintigraphic detection of carcinoid tumors with a cost effectiveness analysis. W J Gastroenterol 2004; 10:3628-3633.
68. Dimitroulopoulos D, Xinopoulos D, Tsamakidis K et al. The role of Sandostatin in treating patients with advanced hepatocellular carcinoma. Hepatogastroenterology 2002; 49:1245-1250.
69. Krenning EP, Kooij PPM, Bakker WH et al. Radiotherapy with a radiolabelled somatostatin analogue [111 In/DTPA/D/Phe1]-octreotide. Ann NY Acad Sci 1994; 733:496-506.
70. Reubi JC, Waser B. Concomitant expression of several peptide receptors in neuroendocrine tumours: molecular basis for in vivo multireceptor tumour targeting. Eur J Nucl Med Mol Imaging 2003; 30:781-793.
71. Lebtahi R, Le Cloirec J, Houzard C et al. Detection of neuroendocrine tumors: 99mTc-P829 scintigraphy compared with 111In-pentetreotide scintigraphy. J Nucl Med 2002; 43:889-895.
72. Schillaci O, Scopinaro F, Angeleti S et al. SPECT improves accuracy of somatostatin receptor scintigraphy in abdominal carcinoid tumors. J Nucl Med 1996; 37:1452-1456.
73. Gopinath G, Ahmed A, Buscombe JR, Dickson JC, Caplin ME, Hilson AJ. Prediction of clinical outcome in treated neuroendocrine tumours of carcinoid type using functional volumes on 111In-pentetreotide SPECT imaging. Nucl Med Commun 2004; 25:253-257.
74. Krausz Y, Keidar Z, Kogan I et al. SPECT/CT hybrid imaging with 111In-pentetreotide in assessment of neuroendocrine tumours. Clin Endocrinol (Oxf) 2003; 59:565-573.
75. Cwikla JB, Buscombe JR, Caplin ME et al. Diagnostic imaging of carcinoid metastases to the abdomen and pelvis. Med Sci Monit 2004; 10(Suppl.3):9-16.
76. Banzo J, Abos MD, García S et al. Somatostatin receptor scintigraphy. When would a SPECT study be performed? Rev Esp Med Nucl 2003; 22:68-75.
77. Ohrvall U, Westlin JE, Nilsson S et al. Intraoperative gamma detection reveals abdominal endocrine tumors more efficiently than somatostatin receptor scintigraphy. Cancer 1997; 80(Suppl. 12):2490-2494.
78. Virgolini I, Patri P, Novotny C et al. Comparative somatostatin receptor scintigraphy using In-111-DOTA-lanreotide and In-111-DOTA-Tyr3-octreotide versus F-18-FDG-PET for evaluation of somatostatin receptor-mediated radionuclide therapy. Ann Oncol 2001; 12(Suppl. 2):S41-S45.
79. Hanson MW, Feldman JM, Blinder RA, Moore JO, Coleman RE. Carcinoid tumors: Iodine-131 MIBG scintigraphy. Radiology 1989; 172:699-703.
80. Schnirer II, Yao JC, Ajani JA. Carcinoid: A comprehensive review. Acta Oncol 2003; 42:672-692.
81. Le Duc-Pennec A, Thol C, Cavarec M et al. Octreotide imaging plus bone scintigrams to optimally localize gastroenteropancreatic neuroendocrine tumors. Clin Nucl Med 2003; 28:5-8.
82. Modlin IM, Tang LH. Approaches to the diagnosis of gut neuroendocrine tumors: the last word (today). Gastroenterology 1997; 112:583-590.
83. Adams S, Baum RP, Hertel A, Schumm-Drager PM, Usadel KH, Hor G. Metabolic (PET) and receptor (SPET) imaging of well- and less well-differentiated tumours: comparison with the expression of the Ki-67 antigen. Nucl Med Commun 1998; 19:641-647.
84. Adams S, Baum R, Rink T, Schumm-Drager PM, Usadel KH, Hor G. Limited value of fluorine-18 fluorodeoxyglucose positron emission tomography for the imaging of neuroendocrine tumours. Eur Nucl Med 1998; 25:79-83.
85. Orlefors H, Sundin A, Garske U et al. Wholebody (11)C-5-hydroxytryptophan positron emission tomography as a universal imaging technique for neuroendodrine tumors: comparison with somatostatin receptor scintigraphy and computed tomography. J Clin Endocrinol Metab 2005; 90:3392-3400.
86. Kowalski J, Henze M, Schuhmacher J, Macke HR, Hofmann M, Haberkorn U. Evaluation of positron emission tomography imaging using [68Ga]-DOTA-D.Phe(1)-Tyr(3)-Octreotide in comparison to [111In]-DTPAOC SPECT. First results in patient with neuroendocrine tumors. Mol Imaging Biol 2003; 5:42-48.
87. Seeman MD, Meisetschlaeger G, Gaa J, Rummeny EJ. Assessment of the extent of metastases of gastrointestinal carcinoid tumors using wholebody PET, CT, MRI, PET/CT and PET/MRI. Eur J Med Res 2006; 11:58-65.
88. Chuah SK, Hu TH, Kuo CM et al. Upper gastrointestinal carcinoid tumors incidentally found by endoscopic examinations. World J Gastroenterol 2005; 11:7028-7032.
89. Matsumoto T, Iida M, Suekane H, Tominaga M, Yao T, Fujishima M. Endoscopic ultrasonography in rectal carcinoid tumors: contribution to selection of therapy. Gastrointest Endosc 1991; 37:539-542.
90. Jetmore AB, Ray JE, Gathright JB Jr, McMullen KM, Hicks TC, Timmcke AE. Rectal carcinoids: the most frequent carcinoid tumor. Dis Colon Rectum 1992; 35:717-725.
91. Ge ZZ, Hu YB, Xiao SD. Capsule endoscopy and push enteroscopy in the diagnosis of obscure gastrointestinal bleeding. Chin Med J (Engl) 2004; 117:1045-1049.
92. Coates SW Jr, DeMarco DC. Metastatic carcinoid tumor discovered by capsule encoscopy and not detected by esophagogastroduodenoscopy. Dig Dis Sci 2004; 49:639-641.
93. Hara AK, Leighton JA, Sharma VK, Fleischer DE. Small bowel: preliminary comparison of capsule endoscopy with barium study and CT. Radiology 2004; 230:260-265.
94. Signorelli C, Villa F, Rondonotti E, Abbiati C, Beccari G, de Franchis R. Sensitivity and specificity of the suspected blood identification system in video capsule enteroscopy. Endoscopy 2005; 37:1170-1173.
95. Rosch T, Lightdale CJ, Botet JF et al. Localization of pancreatic endocrine tumors by endoscopic ultrasonography. N Engl J Med 1992; 326:1721-1726.
96. Zimmer T, Ziegler K, Liehr RM, Stolzer U, Riecken EO, Wiedenmann B. Endosonography of neuroendocrine tumors of the stomach, duodenum and pancreas. Ann NY Acad Sci 1994; 33:425-436.
97. Matsushita M, Takakuwa H, Nishio A. Management of rectal carcinoid tumors. Gastrointest Endosc 2003; 58:641-642.
98. Hokama A, Oshiro J, Kinjo F, Saito A. Utility of endoscopic ultrasonography in rectal carcinoid tumors. Am J Gastroenterol 1996; 91:1289-1290.
99. Martínez Ares D, Souto Ruzo J, Varas Lorenzo MJ et al. Endoscopic ultrasound-assisted endoscopic resection of carcinoid tumors of the gastrointestinal tract. Rev Esp Enferm Dig 2004; 96:847-855.

 
 
 
 
 
 
 
 
 
 
 
 
Está expresamente prohibida la redistribución y la redifusión de todo o parte de los contenidos de la Sociedad Iberoamericana de Información Científica (SIIC) S.A. sin previo y expreso consentimiento de SIIC.
ua31618