ANALISIS DE LA IMPLANTACION MEDIANTE EL GENOTIPO DEL GRUPO SANGUINEO ABO, EN TRASPLANTE DE CELULAS MADRE HEMATOPOYETICAS ABO- INCOMPATIBLES





ANALISIS DE LA IMPLANTACION MEDIANTE EL GENOTIPO DEL GRUPO SANGUINEO ABO, EN TRASPLANTE DE CELULAS MADRE HEMATOPOYETICAS ABO- INCOMPATIBLES

(especial para SIIC © Derechos reservados)
Se verifica, mediante el empleo de técnicas de biología celular, que el análisis del genotipo ABO es de gran utilidad para detectar la implantación celular de un donante ABO-incompatible luego de TMH.
kazuo9.jpg Autor:
Kazuo Muroi,
Columnista Experto de SIIC
Artículos publicados por Kazuo Muroi,
Coautores
Koji Kishino*  Chizuru Kawano-Yamamoto**  Takuji Miyoshi***  Yoko Nakagi*  Takahiro Nagashima**  Masaki Mori, Keiya Ozawa** 
Medical Technologist. Division of Cell Transplantation and Transfusion, Jichi Medical School*
Division of Cell Transplantation and Transfusion, Jichi Medical School**
Division of Hematology, Jichi Medical School***
Recepción del artículo
10 de Marzo, 2004
Aprobación
0 de Julio, 2004
Primera edición
25 de Febrero, 2005
Segunda edición, ampliada y corregida
7 de Junio, 2021

Resumen
Luego del trasplante de células madre hematopoyéticas (TMH) practicado en 12 pacientes se analizó la implantación mediante el estudio del genotipo del grupo sanguíneo ABO (ABO) en la unidad formadora de colonias eritrocitaria (UFC- E) y en las células mononucleares (CMN) de sangre periférica. En 10 pacientes tratados con regímenes mieloablativos se encontraron los genotipos ABO completos del donante en el día 21 posterior al trasplante. Al analizarse el genotipo ABO en cada paciente se observó recuperación hematopoyética autóloga y quimerismo mixto transitorio. El análisis del genotipo ABO es útil para la evaluación de la implantación luego de un TMH ABO-incompatible.

Palabras clave
Trasplante de células madre hematopoyéticas, implantación, genes del grupo sanguíneo ABO, UFC-E, biología molecular


Artículo completo

(castellano)
Extensión:  +/-4.32 páginas impresas en papel A4
Exclusivo para suscriptores/assinantes

Abstract
Background: The analysis of chimerism after hemopoietic stem cell transplantation (HST) is very important to evaluate sustained engraftment of donor cells. Although several methods have been developed, most of these methods identify differentiated cells such as mononuclear cells (MNCs), granulocytes and lymphocytes derived from donor cells. Since cDNAs for A transferase and B transferase were recently cloned, using PCR and clonal cell culture techniques, ABO blood group (ABO) genotypes of erythroid burst-forming units (BFU-E) can be analyzed after ABO-incompatible HST. Materials, methods and results: DNA was serially extracted from erythroid colonies and peripheral blood MNCs in 12 patients who received an ABO-incompatible hemopoietic stem cell transplant. DNA samples were amplified by PCR using specific primers for the A, B and O alleles. Flow cytometric identification of red blood cells (RBCs) was conducted using monoclonal antibodies specific for ABO antigens. Complete conversion to the donor’s ABO genotype was found on day +21 in 10 patients treated with myeloablative regimens. In contrast, recipient’s RBCs were detected until day +85. Autologous hemopoietic recovery was early detected by ABO genotypic analysis of BFU-E in one patient after HST. Another patient treated with a non-myeloablative regimen showed a transient mixed ABO genotypic chimerism of BFU-E and peripheral blood MNCs, followed by complete donor ABO genotypic chimerism in both cells. Conclusion: ABO genotypic analysis is useful for evaluating engraftment of donor cells after ABO-incompatible HST, although identifying complete donor chimerism, complete differences in ABO genes between the donor and recipient are necessary.

Key words
Hemopoietic stem cell transplantation, engraftment, chimerism, ABO blood group gene, BFU-E


Full text
(english)
para suscriptores/ assinantes

Clasificación en siicsalud
Artículos originales > Expertos del Mundo >
página   www.siicsalud.com/des/expertocompleto.php/

Especialidades
Principal: Hematología, Trasplantes
Relacionadas: Bioquímica, Diagnóstico por Laboratorio, Medicina Interna



Comprar este artículo
Extensión: 4.32 páginas impresas en papel A4

file05.gif (1491 bytes) Artículos seleccionados para su compra



Enviar correspondencia a:
Muroi, Kazuo
Bibliografía del artículo
  1. David B, Bernard D, Navenot JM et al. Flow cytometric monitoring of red blood cell chimerism after bone marrow transplantation. Transfus Med 1999; 9: 209-217.
  2. Palka G, Calabrese G, Di Girolamo G et al. Cytogenetic survey of 31 patients treated with bone marrow transplantation for acute nonlymphocytic and acute lymphoblastic leukemias. Cancer Genet Cytogenet 1991; 51: 223-233.
  3. Kogler G, Wolf HH, Heyll A et al. Detection of mixed chimerism and leukemic relapse after allogeneic bone marrow transplantation in subpopulations of leucocytes by fluorescent in situ hybridization in combination with the simultaneous immunophenotypic analysis of interphase cells. Bone Marrow Transplant 1995; 15:41-48.
  4. Leclair B, Fregeau CJ, Aye MT et al. DNA typing for bone marrow engraftment follow-up after allogeneic transplant: a comparative study of current technologies. Bone Marrow Transplant 1995; 16: 43-55.
  5. Wang LJ, Chou P, Gonzalez-Ryan L, et al.: Evaluation of mixed hematopoietic chimerism in pediatric patients with leukemia after allogeneic stem cell transplantation by quantitative PCR analysis of variable number of tandem repeat and testis determination gene. Bone Marrow Transplant 2002; 29: 51-56.
  6. Lee JH, Lee JH, Choi SJ, et al.: Changes of isoagglutinin titres after ABO-incompatible allogeneic stem cell transplantation. Br J Haematol 2003; 120: 702-710.
  7. Watkins WM.: Biochemistry and Genetics of the ABO, Lewis, and P blood group systems. Adv Hum Genet 1980; 10:1-136, 379-385.
  8. Hakomori S.: Philip Levine award lecture: blood group glycolipid antigens and their modifications as human cancer antigens. Am J Clin Pathol 1984; 82: 635-648.
  9. Yamamoto F.: Molecular genetics of the ABO histo-blood group system. Vox Sang 1995; 69:1-7.
  10. Yamamoto F.: Molecular genetics of ABO. Vox Sang 2000; 78 Suppl 2: 91-103.
  11. Kishino K, Muroi K, Kawano C, et al.: Evaluation of engraftment by ABO genotypic analysis of erythroid burst-forming units after bone marrow transplantation. Leuk Res 2002; 26: 13-17.
  12. Procter J, Crawford J, Bunce M, et al.: A rapid molecular method (polymerase chain reaction with sequence-specific primers) to genotype for ABO blood group and secretor status and its potential for organ transplants. Tissue Antigens 1997; 50: 475-483.
  13. Suzuki T, Muroi K, Tomizuka H, et al.: Characterization of enriched CD34+ cells from healthy volunteers and those from patients treated with chemotherapy plus granulocyte colony-stimulating factor (G-CSF). Stem Cells 1995; 13: 273-280.
  14. Muroi K, Kawano C, Yokote T, et al.: Early myelodysplastic syndrome after allogeneic bone marrow transplantation for acute myeloid leukemia. Leuk Lymphoma. 2002; 43: 1493-1496.
  15. Blanchard D, Bruneau V, Bernard D, et al.: Flow cytometry analysis of dual red blood cell populations after bone marrow transplantation. Br J Haematol 1995;89: 741-747.
  16. Hasegawa W, Lipton JH, Messner HA, et al.: Influence of one human leukocyte antigen mismatch on outcome of allogeneic bone marrow transplantation from related donors. Hematology 2003; 8: 27-33.
  17. Anagnostopoulos A, Giralt S.: Critical review on non-myeloablative stem cell transplantation (NST). Crit Rev Oncol Hematol. 2002; 44:175-190.
  18. Benjamin RJ, Connors JM, McGurk S, et al.: Prolonged erythroid aplasia after major ABO-mismatched transplantation for chronic myelogenous leukemia. Biol Blood Marrow Transplant 1998; 4: 151-156.
  19. Lee JH, Lee KH, Kim S, et al.: Anti-A isoagglutinin as a risk factor for the development of pure red cell aplasia after major ABO-incompatible allogeneic bone marrow transplantation. Bone Marrow Transplant 2000; 25: 179-184.
  20. Maciej Zaucha J, Mielcarek M, Takatu A, et al.: Engraftment of early erythroid progenitors is not delayed after non-myeloablative major ABO-incompatible haematopoietic stem cell transplantation. Br J Haematol 2002; 119: 740-750.
  21. Seltsam A, Hallensleben M, Kollmann A, et al.: Systematic analysis of the ABO gene diversity within exons 6 and 7 by PCR screening reveals new ABO alleles. Transfusion 2003; 43: 428-439.
  22. Yip SP.: Sequence variation at the human ABO locus. Ann Hum Genet 2002; 66(Pt 1): 1-27.
  23. Watts MJ, Somervaille TC, Ings SJ, et al.: Variable product purity and functional capacity after CD34 selection: a direct comparison of the CliniMACS (v2.1) and Isolex 300i (v2.5) clinical scale devices. Br J Haematol 2002; 118: 117-123.

 
 
 
 
 
 
 
 
 
 
 
 
Está expresamente prohibida la redistribución y la redifusión de todo o parte de los contenidos de la Sociedad Iberoamericana de Información Científica (SIIC) S.A. sin previo y expreso consentimiento de SIIC.
ua31618