(especial para SIIC © Derechos reservados)
El objetivo de esta revisión fue analizar las ideas y los paradigmas por los que han transitado los estudios sobre obesidad, y su relación con contaminantes ambientales, alimentación y epigenética, con el propósito de ilustrar la situación actual.
Sagrario Lobato Huerta
Columnista Experta de SIIC

Universidad de la Salud del Estado de Puebla

Artículos publicados por Sagrario Lobato Huerta
Marcos Bucio-Pacheco* Raúl Villegas Vizcaíno** 
Biólogo, Universidad Autónoma de Sinaloa, Sinaloa, México*
Biotecnólogo, Universidad Autónoma Agraria Antonio Narro, México**
Recepción del artículo
14 de Octubre, 2021
14 de Octubre, 2021
Primera edición
20 de Octubre, 2021
Segunda edición, ampliada y corregida
26 de Mayo, 2022

Kuhn en 1962 establece el carácter revolucionario de la ciencia: "las nuevas teorías científicas no nacen por verificación ni por falsación, sino por sustitución". El objetivo de esta revisión fue analizar las ideas y los paradigmas por los que han transitado los estudios sobre obesidad, y su relación con contaminantes ambientales, alimentación y epigenética, con el propósito de ilustrar la situación actual de este objeto de estudio. Se gestionaron artículos en diciembre de 2020 de la Web of Science. La estrategia fue Obesity AND (pollution OR contamination) en el campo Title, AND (epigenetic* OR obesity OR alimentation OR nutrition OR diet) en el campo Themes. Se obtuvieron 654 artículos: 577 investigaciones originales y 77 revisiones. Los documentos se exportaron en formato BibTeX para ser analizados cuantitativamente con el programa Bibliometrix. Para el análisis cualitativo se seleccionaron artículos de revisión en cuyos títulos, palabras clave o resumen llevaran la palabra paradigm*, con lo que se identificaron 19, a los que se les realizó análisis de contenido. De 1980 a 2020 se reconocieron cuatro períodos; el primero y el tercero se clasifican como ciencia normal; el segundo y el cuarto, como crisis de conocimiento o revolución. La evolución de los estudios ha sido diferenciada. Primero, la temática central fue la contaminación ambiental y, de manera secundaria, la obesidad. Para el segundo y el tercer período se investigan por separado la epigenética relacionada con la contaminación ambiental y la asociada con la obesidad, y en la actualidad, se plantean hipótesis de relaciones causales entre contaminantes ambientales y obesidad, nutrientes y epigenética.

Palabras clave

Artículo completo

Extensión:  +/-6.74 páginas impresas en papel A4
Exclusivo para suscriptores/assinantes

Kuhn in 1962 establishes the revolutionary character of science: "new scientific theories are not born by verification or falsification, but by substitution." The objective of this review was to analyze the ideas and paradigms through which studies on obesity and its relationship with environmental pollutants, diet and epigenetics have passed, in order to illustrate the current situation of this object of study. Articles were managed in December 2020 from the Web of Science. The strategy was Obesity AND (pollution OR contamination) in the Title field, AND (epigenetic* OR obesity OR food OR nutrition OR diet) in the Themes field. 654 articles were obtained: 577 original investigations and 77 reviews. The documents were exported in BibTeXformat to be quantitatively analyzed with the Bibliometrix program. For the qualitative analysis, review articles were selected in whose titles, keywords and/or abstract, carried the word paradigm*, identifying 19 who underwent content analysis. From 1980 to 2020, four periods were recognized, the first and third are classified as normal science; the second and the fourth, crisis of knowledge or revolution. The evolution of the studies has been differentiated. First, the central theme was environmental pollution and secondarily, obesity. For the second and third period, the epigenetics related to environmental pollution and that associated with obesity are investigated separately and at present, causal relationships between environmental pollutants and obesity, nutrients and epigenetics are hypothesized.

Clasificación en siicsalud
Artículos originales > Expertos de Iberoamérica >
página   www.siicsalud.com/des/expertocompleto.php/

Principal: Endocrinología y Metabolismo, Epidemiología, Salud Pública
Relacionadas: Epidemiología, Genética Humana, Medicina Interna, Nutrición, Toxicología

Comprar este artículo
Extensión: 6.74 páginas impresas en papel A4

file05.gif (1491 bytes) Artículos seleccionados para su compra

Enviar correspondencia a:
Sagrario Lobato Huerta, Universidad de la Salud del Estado de Puebla, Puebla, México
Bibliografía del artículo
1. Danquah FI, Ansu-Mensah M, Bawontuo V, Yeboah M, Kuupiel D. Prevalence, incidence, and trends of childhood overweight/obesity in Sub-Saharan Africa: a systematic scoping review. Arch Public Health 78:109, 2020.
2. Pacific R, Martin HD, Kulwa K, Petrucka P. Contribution of home and school environment in children's food choice and overweight/obesity prevalence in African context: Evidence for creating enabling healthful food environment. Pediatric Health Med Ther 11:283-295, 2020.
3. Kassie AM, Abate BB, Kassaw MW. Prevalence of overweight/obesity among the adult population in Ethiopia: a systematic review and meta-analysis. BMJ Open 10:e039200, 2020.
4. Skolarczyk J, Pekar J, Labadz D, Skorzynska-Dziduszko K. Role of heavy metals in the development of obesity: A review of research. J Elem 23(4):1271-1280, 2018.
5. Sliwowska JH, Ziarniak K, Dudek M, Matuszewska J, Tena-Sempere M. Dangerous liaisons for pubertal maturation: the impact of alcohol consumption and obesity on the timing of puberty. BiolReprod 100(1):25-40, 2019.
6. Samblas M, Milagro FI, Martínez A. DNA methylation markers in obesity, metabolic syndrome, and weight loss. Epigenetics 4(5):421-444, 2019.
7. Di Domenico M, Pinto F, Quagliuolo L, Contaldo M, Settembre G, Romano A, et al. The role of oxidative stress and hormones in controlling obesity. Front Endocrinol (Lausanne) 10:540, 2019.
8. Agurs-Collins T, Ross SA, Dunn BK. The Many Faces of obesity and its influence on breast cancer risk. Front Oncol 9:765, 2019.
9. Samodien E, Pheiffer C, Erasmus M, Mabasa L, Louw J, Johnson R. Diet-induced DNA methylation within the hypothalamic arcuate nucleus and dysregulatedleptin and insulin signaling in the pathophysiology of obesity. Food SciNutr 7(10):3131-3145, 2019.
10. Ou XH, Zhu CC, Sun SC. Effects of obesity and diabetes on the epigenetic modification of mammalian gametes. J Cell Physiol 234(6):7847-7855, 2019.
11. Cinpeanu O C, Rus V, Tarcea M. Insight about colonic microbiota imbalance and obesity. Bull UnivAgricSci Vet Med ClujNapoca 76(1):19-26, 2019.
12. Heindel JJ, Blumberg B. Environmental obesogens: Mechanisms and controversies. Annu Rev Pharmacol Toxicol 59:89-106, 2019.
13. Gilbert M, Raman J, Sui Z. Cognitive remediation enabled cognitive behaviour therapy for obesity: a case series. Eat Weight Disord 26(1):103-114, 2021.
14. Demir N, Bilgic A. Determinants of obesity in Turkey: appetite or disease? J Theory Pract Dent Public Health 27:151-161, 2019.
15. Darbandi M, Najafi F, Pasdar Y, Mostafaei S, Rezaeian S. Factors associated with overweight and obesity in adults using structural equation model: mediation effect of physical activity and dietary pattern. Eat Weight Disord 25(6):1561-1571, 2019.
16. Lian M, Qianb Z, Vaughn M, Boutwell E, Ward P, Lu T, et al. Sex-specific difference of the association between ambient air pollution and the prevalence of obesity in Chinese adults from a high pollution range area: 33 Communities Chinese Health Study. Atmospheric Environment 117:227-233, 2015.
17. Parastar S, Ebrahimpour K, Hashemi M, Reza Maracy M, Ebrahimi A, Poursafa P, Kelishadi R. Association of urinary concentrations of four chlorophenol pesticides with cardiometabolic risk factors and obesity in children and adolescents. Environ SciPollut Res Int 25:4516-4523, 2018.
18. Savastano S, Tarantino G, D'Esposito V, Passaretti F, Cabaro S, Liotti A, et al. Bisphenol-A plasma levels are related to inflammatory markers, visceral obesity and insulin-resistance: a cross-sectional study on adult male population. J Transl Med 13:169, 2015.
19. Khun TS. The Structure of Scientific Revolutions. 2ª ed. United States of America: Foundations of the Unity of Science; 1970.
20. Aria M, Cuccurullo C. Bibliometrix: An R-tool for comprehensive science mapping analysis. J Informetr 11(4):959-975, 2017.
21. Eisenmann JC. Insight into the causes of the recent secular trend in pediatric obesity: Common sense does not always prevail for complex, multi-factorial phenotypes. Prev Med 42(5):329-335, 2006.
22. Myslobodsky M, Ingraham LJ. Managing the pandemic of obesity: Siding with the fox or the hedgehog? Obes Facts 2(6):384-392, 2009.
23. Alemany M. Different effects of hyperlipidic diets in human lactation and adulthood: growth versus the development of obesity. Reprod Biol Endocrinol 9:101, 2011.
24. Li M, Sloboda DM, Vickers MH. Maternal obesity and developmental programming of metabolic disorders in offspring: Evidence from animal models. Exp Diabetes Res 592408, 2011.
25. Adamo K B, Ferraro Z M, Brett K E. Can we modify the intrauterine environment to halt the intergenerational cycle of obesity? Int J Environ Res Public Health 9(4):1263-1307, 2012.
26. Egger G, Dixon J. Beyond obesity and lifestyle: A review of 21st century chronic disease determinants. Biomed Res Int 731685, 2014.
27. Vaneckova I, Maletinska L, Behuliak M, Nagelova V, Zicha J, Kunes J. Obesity-related hypertension: possible pathophysiological mechanisms. J. Endocrinol 223(3):R63-R78, 2014.
28. Stenvinkel P. Obesity-a disease with many aetiologies disguised in the same oversized phenotype: has the overeating theory failed? Nephrol Dial Transplant 30(10):1656-1664, 2015.
29. Lopomo A, Burgio E, Migliore L. Epigenetics of obesity. Prog Mol Biol Transl Sci 140:151-184, 2016.
30. Vijayakanthi N, Greally JM, Rastogi D. Pediatric obesity-related asthma: The role of metabolic dysregulation. Pediatrics 137(5):e20150812, 2016.
31. Xue J, Ideraabdullah FY. An assessment of molecular pathways of obesity susceptible to nutrient, toxicant and genetically induced epigenetic perturbation. J Nutr Biochem 30:1-13, 2016.
32. Oliveira PF, Sousa M, Silva BM, Monteiro MP, Alves MG. Obesity, energy balance and spermatogenesis. Reproduction 153(6):R173-R185, 2017.
33. An R, Ji M, Yan H, Guan G. Impact of ambient air pollution on obesity: a systematic review. Int J Obes 42(6):1112-1126, 2018.
34. Bettiga A, Fiorio F, Di Marco F, Trevisani F, Romani A, Porrini E, et al. The modern western diet rich in advanced glycation end-products (AGEs): An overview of its impact on obesity and early progression of renal pathology. Nutrients 11(8):1748, 2019.
35. Fernandez-Twinn DS, Hjort L, Novakovic B, Ozanne SE, Saffery R. Intrauterine programming of obesity and type 2 diabetes. Diabetologia 62(10):1789-1801, 2019.
36. Soubry A. POHaD: why we should study future fathers. Environ Epigenet 4(2):dvy007, 2018.
37. Portha B, Grandjean V, Movassat J. Mother or father: Who is in the front line? Mechanisms underlying the non-genomic transmission of obesity/diabetes via the maternal or the paternal line. Nutrients 11(2):233, 2019.
38. Shahnazaryan U, Wójcik M, Bednarczuk T, Kury?owicz A. Role of obesogens in the pathogenesis of obesity. Medicina (Kaunas) 55(9):515, 2019.
39. Hoek G, Brunekreef B, Verhoeff A, van Wijnen J, Fischer P. Daily mortality and air pollution in The Netherlands. J Air Waste Manag Assoc 50(8):1380-1389, 2000.
40. Hoek G, Fischer P, Van Den Brandt P, Goldbohm S, Brunekreef B. Estimation of long-term average exposure to outdoor air pollution for a cohort study on mortality. J Expo Anal Environ Epidemiol 11(6):459-469, 2001.
41. Hoek G, Meliefste K, Cyrys J, Lewn´w M, Bellander T, Brauer M, et al. Spatial variability of fine particle concentrations in three European areas. Atmos Environ 36:4077-4088, 2002.
42. Cyrys J, Heinrich J, Hoek G, Meliefste K, Lewné M, Gehring U, et al. Comparison between different traffic-related particle indicators: elemental carbon (EC), PM2.5 mass, and absorbance. J Expo Anal Environ Epidemiol 13(2):134-143, 2003.
43. Timonen KL, Hoek G, Heinrich J y col. Daily variation in fine and ultrafine particulate air pollution and urinary concentrations of lung Clara cell protein CC16. Occup Environ Med. 2004;61(11):908-14.
44. Vallius M, Janssen NA, Heinrich J, Hoek G, J Ruuskanen, J Cyrys, et al. Sources and elemental composition of ambient PM(2.5) in three European cities. Sci Total Environ 337(1-3):147-162, 2005.
45. van Roosbroeck S, Wichmann J, Janssen NA, Hoek G, van Wijnen JH, Lebret E, Brunekreef B. Long-term personal exposure to traffic-related air pollution among school children, a validation study. Sci Total Environ 368(2-3):565-573, 2006.
46. Lanki T, Ahokas A, Alm S, Janssen N, Hoek G, De Hartog J, et al. Determinants of personal and indoor PM2.5 and absorbance among elderly subjects with coronary heart disease. J Expo Sci Environ Epidemiol 17(2):124-133, 2007.
47. Van Roosbroeck S, Hoek G, Meliefste K, Janssen NA, Brunekreef B. Validity of residential traffic intensity as an estimate of long-term personal exposure to traffic-related air pollution among adults. Environ Sci Technol 42(4):1337-1344, 2008.
48. Vaissière T, Cuenin C, Paliwal A, Vineis P, Hoek G, Krzyzanowski M, et al. Quantitative analysis of DNA methylation after whole bisulfitome amplification of a minute amount of DNA from body fluids. Epigenetics 4(4):221-230, 2009.
49. Key TJ, Appleby PN, Reeves GK, Roddam AW; Endogenous Hormones and Breast Cancer Collaborative Group. Insulin-like growth factor 1 (IGF1), IGF binding protein 3 (IGFBP3), and breast cancer risk: pooled individual data analysis of 17 prospective studies. Lancet Oncol 11(6):530-542, 2010.
50. Papathomas M, Molitor J, Richardson S, Riboli E, Vineis P. Examining the joint effect of multiple risk factors using exposure risk profiles: lung cancer in nonsmokers. Environ Health Perspect 119(1):84-91, 2011.
51. InterAct Consortium, Ekelund U, Palla L, Brage S, Franks P, Peters T, Balkau B, et al. Physical activity reduces the risk of incident type 2 diabetes in general and in abdominally lean and obese men and women: the EPIC-InterAct Study. Diabetologia 55(7):1944-1952, 2012.
52. Andersen ZJ, Olsen TS, Andersen KK, Loft S, Ketzel M, Raaschou-Nielsen O. Association between short-term exposure to ultrafine particles and hospital admissions for stroke in Copenhagen, Denmark. Eur Heart J 31(16):2034-2040, 2010.
53. Raaschou-Nielsen O, Andersen ZJ, Hvidberg M, Jensen S, Ketzel M, Sørensen M, et al. Air pollution from traffic and cancer incidence: a Danish cohort study. Environ Health 10:67, 2011.
54. Andersen ZJ. Health effects of long-term exposure to air pollution: An overview of major respiratory and cardiovascular diseases and diabetes. Chem Ind Chem Eng Q 18(4)II:617-622, 2012.
55. Liu C, Ying Z, Harkema J, Sun Q, Rajagopalan S. Epidemiological and experimental links between air pollution and type 2 diabetes. Toxicol Pathol 41(2):361-373, 2013.
56. Mendez R, Zheng Z, Fan Z, Rajagopalan S, Sun Q, Zhang K. Exposure to fine airborne particulate matter induces macrophage infiltration, unfolded protein response, and lipid deposition in white adipose tissue. Am J Transl Res 5(2):224-234, 2013.
57. Yitshak-Sade M, Nethery R, Schwartz JD, Mealli F, Dominici F, Di Q, et al. PM2.5 and hospital admissions among Medicare enrollees with chronic debilitating brain disorders. Sci Total Environ 755(Pt 2):142524, 2021.
58. Analitis A, Barratt B, Green D, Beddows A, Samoli E, Schwart Jd, Katsouyanni K. Prediction of PM2.5 concentrations at the locations of monitoring sites measuring PM10 and NOx, using generalized additive models and machine learning methods: A case study in London. Atmos Environ 240:117757, 2020.
59. Rhee J, Fabian MP, Ettinger de Cuba S, Coleman S, Sandel M, Lane K, et al. Effects of maternal homelessness, supplemental nutrition programs, and prenatal PM2.5 on birthweight. Int J Environ Res Public Health 16(21):4154, 2019
60. Schwartz JD, Wang Y, Kloog I, Yitshak-Sade M, Dominici F, Zanobetti A. Estimating the Effects of PM2.5 on life expectancy using causal modeling methods. Environ Health Perspect 126(12):127002, 2018.
61. Nwanaji-Enwerem JC, Colicino E, Dai L, Di Q, Just A, Hou L, et al. miRNA processing gene polymorphisms, blood DNA methylation age and long-term ambient PM2.5 exposure in elderly men. Epigenomics 9(12):1529-1542, 2017.
62. Li W, Dorans KS, Wilker EH, Rice M, Schwartz J, Coull B, et al. Residential proximity to major roadways, fine particulate matter, and adiposity: The framingham heart study. Obesity (Silver Spring) 24(12):2593-2599, 2016.
63. Kupsco A, Gonzalez G, Baker BH, Knox J, Zheng Y, Wang S, et al. Associations of smoking and air pollution with peripheral blood RNA N6-methyladenosine in the Beijing truck driver air pollution study. Environ Int 144:106021, 2020.
64. Wang C, Koutrakis P, Gao X, Baccarelli A, Schwartz J. Associations of annual ambient PM2.5 components with DNAm PhenoAge acceleration in elderly men: The Normative Aging Study. Environ Pollut 258:113690, 2020.
65. Rajagopalan S, Park B, Palanivel R, Vinayachandran V, Deiuliis J, Gangwar R, et al. Metabolic effects of air pollution exposure and reversibility. J ClinInvest 130(11):6034-6040, 2020.
66. Xia C, Razavi M, Rao X, Braunstein Z, Mao H, Toomey A, et al. MRP14 enhances the ability of macrophage to recruit T cells and promotes obesity-induced insulin resistance. Int J Obes (Lond) 43(12):2434-2447, 2019.
67. Sun Q, Zhang G, Chen R, Li R, Wang H, Jiang A, et al. Central IKK2 inhibition ameliorates air pollution-mediated hepatic glucose and lipid metabolism dysfunction in mice with type II diabetes. Toxicol Sci 164(1):240-249, 2018.
68. Liu C, Xu X, Bai Y, Zhong J, Wang A, Sun L, et al. Particulate air pollution mediated effects on insulin resistance in mice are independent of CCR2. Part FibreToxicol 14(1):6, 2017.
69. Deiuliis JA, Syed R, Duggineni D, Rutsky J, Rengasamy P, Zhang J, et al. Visceral adipose microRNA 223 is upregulated in human and murine obesity and modulates the inflammatory phenotype of macrophages. PLoS One 11(11):e0165962, 2016.
70. Rao X, Montresor-Lopez J, Puett R, Rajagopalan S, Brook RD. Ambient air pollution: an emerging risk factor for diabetes mellitus. Curr Diab Rep 15(6):603, 2015.
71. Dai L, Bind MA, Koutrakis P, Coull BA, Sparrow D, Vokonas PS, Schwartz JD. Fine particles, genetic pathways, and markers of inflammation and endothelial dysfunction: Analysis on particulate species and sources. J Expo Sci Environ Epidemiol 26(4):415-421, 2016.
72. Sørensen M, Hjortebjerg D, Eriksen KT, Ketzel M, Tjønneland A, Overvad K, Raaschou-Nielsen O. Exposure to long-term air pollution and road traffic noise in relation to cholesterol: A cross-sectional study. Environ Int 85:238-243, 2015.
73. Cordova R, Knaze V, Viallon V, Rust P, Schalkwijk C, Weiderpass E, et al. Dietary intake of advanced glycation end products (AGEs) and changes in body weight in European adults. Eur J Nutr 59(7):2893-2904, 2020.
74. Liu S, Jørgensen JT, Ljungman P, Pershagen G, Bellander T, Leander K, et al. Long-term exposure to low-level air pollution and incidence of chronic obstructive pulmonary disease: The ELAPSE project. Environ Int 146:106267, 2020.
75. McConnell R, Shen E, Gilliland FD, Jerrett M, Wolch J, Chang CC, et al. A longitudinal cohort study of body mass index and childhood exposure to secondhand tobacco smoke and air pollution: The Southern California Children's Health Study. Environ Health Perspect 123(4):360-366, 2015.
76. Cramer J, ThermingJørgensen J, Sørensen M, Backalarz C, Laursen J, Ketzel M, et al. Road traffic noise and markers of adiposity in the Danish Nurse Cohort: A cross-sectional study. Environ Res 172:502-510, 2019.

Título español
 Palabras clave
 Artículo completo
(exclusivo a suscriptores)
  Tema principal en SIIC Data Bases

 English title
  Key words
Full text
(exclusivo a suscriptores)

Patrocinio y reconocimiento
Imprimir esta página
Está expresamente prohibida la redistribución y la redifusión de todo o parte de los contenidos de la Sociedad Iberoamericana de Información Científica (SIIC) S.A. sin previo y expreso consentimiento de SIIC.