LA EFICACIA DE LA TERAPIA DE MOVIMIENTO INDUCIDO POR RESTRICCION SE RELACIONA CON LA NEUROPLASTICIDAD




Artículos relacionadosArtículos relacionadosArtículos relacionados
Artículos afines de siicsalud publicados en los últimos 4 meses
REHABILITACIÓN EMOCIONAL EN LA ESQUIZOFRENIA
Frontiers in Psychiatry 14(1250933):1-11
Difundido en siicsalud: 29 ene 2024
EL ÍNDICE DE TRIGLICÉRIDOS-GLUCOSA ESTÁ ASOCIADO CON EL ACCIDENTE CEREBROVASCULAR
Diabetology & Metabolic Syndrome 15(187):1-10
Difundido en siicsalud: 27 oct 2023

LA EFICACIA DE LA TERAPIA DE MOVIMIENTO INDUCIDO POR RESTRICCION SE RELACIONA CON LA NEUROPLASTICIDAD

(especial para SIIC © Derechos reservados)
La terapia de movimiento inducido por restricción puede ser eficaz para el tratamiento de los pacientes con déficit motor asociado a diferentes entidades neurológicas. Dicha eficacia se relacionaría con procesos de neuroplasticidad.
gauthier9.jpg Autor:
Lynne V Gauthier
Columnista Experto de SIIC

Institución:
University of Alabama at Birmingham


Artículos publicados por Lynne V Gauthier
Coautor
Edward Taub* 
University of Alabama at Birmingham, Birmingham, EE.UU.*
Recepción del artículo
10 de Marzo, 2009
Aprobación
13 de Abril, 2009
Primera edición
18 de Enero, 2010
Segunda edición, ampliada y corregida
7 de Junio, 2021

Resumen
Existe cada vez más información que permite sugerir que no es únicamente el cerebro el que controla e interpreta las experiencias. En cambio, las experiencias individuales pueden tener un efecto recíproco sobre la estructura y el funcionamiento cerebral. Dicho efecto fue observado en humanos a nivel macroscópico mediante resonancia magnética estructural funcional y, a nivel sináptico, en roedores. En el presente estudio se evaluó el efecto de las experiencias sobre la estructura cerebral y el modo de obtención de neuroplasticidad mediante paradigmas de rehabilitación con el objetivo de fomentar una recuperación funcional más adecuada luego del daño neuronal.

Palabras clave
neuroplasticidad, accidente cerebrovascular, movimiento inducido por restricción, terapia de movimiento inducido por restricción, neuroplasticidad, rehabilitación, morfometría basada en vóxeles, cambio estructural cerebral


Artículo completo

(castellano)
Extensión:  +/-10.92 páginas impresas en papel A4
Exclusivo para suscriptores/assinantes

Abstract
An increasing body of evidence suggests that not only does the brain control and interpret experience, but that the experiences of the individual can have an equally profound reciprocal effect on the brain's structure and function. These effects have been observed both macroscopically in humans (using structural magnetic resonance imaging) and at the level of the synapse in rodents. The following will review the impact that experience can have on brain structure and suggest how neuroplasticity may be harnessed through rehabilitation paradigms to promote better recovery of function after neurological damage.

Key words
CI therapy, neuroplasticity, neuroplasticity, stroke, rehabilitation, constraint-induced movement, voxel-based morphometry, structural brain change


Full text
(english)
para suscriptores/ assinantes

Clasificación en siicsalud
Artículos originales > Expertos del Mundo >
página   www.siicsalud.com/des/expertocompleto.php/

Especialidades
Principal: Neurología
Relacionadas: Anatomía Patológica, Atención Primaria, Diagnóstico por Imágenes, Fisiatría, Geriatría, Medicina Interna, Salud Mental



Comprar este artículo
Extensión: 10.92 páginas impresas en papel A4

file05.gif (1491 bytes) Artículos seleccionados para su compra



Enviar correspondencia a:
Lynne V. Gauthier, University of Alabama at Birmingham Department of Psychology, AL 35294, CPM 720, 1530 3rd Ave. S, Birmingham, EE.UU.
Bibliografía del artículo


1. Draganski B, Gaser C, Busch V, Schuierer G, Bogdahn U, May A. Changes in grey matter induced by training. Nature 427:311-312, 2004.
2. Draganski B, Gaser C, Kempermann G, Kuhn HG, Winkler J, Buchel C, May A. Temporal and spatial dynamics of brain structure changes during extensive learning. J Neurosci 26:6314-6317, 2006.
3. Maguire SS, Gadian DG, Johnsrude IS, Good CD, Ashburner J, Frackowiak RS, Frith CD. Navigation-related structural change in the hippocampi of taxi drivers. Proc Natl Acad Sci USA 97:4414-4416, 2000.
4. Bengtsson S, Nagy Z, Skare S, Forsman L, Forssberg H, Ullén F. Extensive piano practicing has regionally specific effects on white matter development. Nat Neurosci 8:1148-1150, 2005.
5. Han Y, Yang H, Lv Y, Zhu C, He Y, Tang H, Gong Q, Luo Y, Zang Y, Dong Q. Gray matter density and white matter integrity in pianists' brain: A combined structural and diffusion tensor MRI study. Neurosci Lett (Epub ahead of print), 2008.
6. Taub E, Miller NE, Novack TA, Cook EW III, Fleming WC, Nepomuceno CS, Connell JS, Crago JE. Technique to improve chronic motor deficit after stroke. Arch Phys Med Rehabil 74:347-354, 1993.
7. Wolf SL, Winstein CJ, Miller JP, Taub E, Uswatte G, Morris D, Giuliani C, Light KE, Nichols-Larsen D. Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the excite randomized clinical trial. JAMA 296:2095-2104, 2006.
8. Taub E, Uswatte G, King DK, Morris D, Crago JE, Chatterjee A. A placebo controlled trial of constraint-induced movement therapy for upper extremity after stroke. Stroke 37:1045-1049, 2006.
9. Taub E. Harnessing brain plasticity through behavioral techniques to produce new treatments in neurorehabilitation. Am Psychol 59:692-704, 2004.
10. Morris DM, Taub E, Mark VW. Constraint-induced movement therapy: characterizing the intervention protocol. Eura Medicophys 42:257-268, 2006.
11. Taub E. Somatosensory deafferentation research with monkeys: implications for rehabilitation medicine. In: LP Ince, ed., Behavioral psychology in rehabilitation medicine: clinical applications, New York, Williams & Wilkins, pp. 371-401, 1980.
12. Morris DM, Crago JE, DeLuca SC, Pidikiti RD, Taub E. Constraint-induced (CI) movement therapy for motor recovery after stroke. NeuroRehabilitation 9:29-43, 1997.
13. Gauthier LV, Taub E, Perkins C, Ortmann M, Mark VW, Uswatte G. Remodeling the brain: plastic structural brain changes produced by different motor therapies after stroke. Stroke 39:1520-1525, 2008.
14. Shaw SE, Morris DM, Uswatte G, McKay S, Meythaler JM, Taub E. Constraint-induced movement therapy for recovery of upper-limb function following traumatic brain injury. J Rehabil Res Dev 42:769-778, 2005.
15. Mark VW, Taub E, Bashir K, Uswatte G, Delgado A, Bowman MH, Bryson CC, McKay S, Cutter GR. Constraint-induced movement therapy can improve hemiparetic progressive multiple sclerosis. Preliminary findings. Mult Scler 14:992-994, 2008.
16. Taub E, Griffin A, Nick J, Gammons K, Uswatte G, Law CR. Pediatric CI therapy for stroke-induced hemiparesis in young children. Dev Neurorehabil 10:3-18, 2007.
17. Liepert J, Miltner WH, Bauder H, Sommer M, Dettmers C, Taub E, Weiller C. Motor cortex plasticity during constraint-induced movement therapy in stroke patients. Neurosci Lett 250:5-8, 1998.
18. Liepert J, Bauder H, Wolfgang HR, Miltner WH, Taub E, Weiller C. Treatment-induced cortical reorganization after stroke in humans. Stroke 31:1210-1216, 2000.
19. Boake C, Noser EA, Ro T, Baraniuk S, Gaber M, Johnson R, Salmeron ET, Tran TM, Lai JM, Taub E, Moye LA, Grotta JC, Levin HS. Constraint-induced movement therapy during early stroke rehabilitation. Neurorehabil Neural Repair 21:14-24, 2007.
20. Wittenberg GF, Chen R, Ishii K, Bushara KO, Taub E, Gerber LH, Hallett M, Cohen LG. Constraint-induced therapy in stroke: magnetic-stimulation motor maps and cerebral activation. Neurorehabil Neural Repair 17:48-57, 2003.
21. Hamzei F, Liepert J, Dettmers C, Weiller C, Rijntjes M. Two different reorganization patterns after rehabilitative therapy: an exploratory study with fMRI and TMS. Neuroimage 31:710-720, 2006.
22. Kopp B, Kunkel A, Mühlnickel W, Villringer K, Taub E, Flor H. Plasticity in the motor system related to therapy-induced improvement of movement after stroke. Neuroreport 10:807-810, 1999.
23. Schaechter JD, Kraft E, Hilliard TS, Dijkhuizen RM, Benner T, Finklestein S, Rosen BR, Cramer SC. Motor recovery and cortical reorganization after constraint-induced movement therapy in stroke patients: a preliminary study. Neurorehabil Neural Repair 16:326-338, 2002.
24. Jenkins WM, Merzenich MM, Ochs MT, Allard T, Guic-Robles. Functional reorganization of primary somatosensory cortex in adult owl monkeys after behaviorally controlled tactile stimulation. J Neurophysiol 63:82-104, 1990.
25. Nudo R, Milliken G, Jenkins W, Merzenich M. Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys. J Neurosci 16:785-807, 1996.
26. Plautz E, Milliken G, Nudo R. Effects of repetitive motor training on movement representations in adult squirrel monkeys: Role of use versus learning. Neurobiol Learn and Mem 74:27-55, 2000.
27. Kleim J, Barbay S, Cooper NR, Hogg T, Reidel CN, Remple MS, Nudo RJ. Motor learning-dependent synaptogenesis is localized to functionally reorganized motor cortex. Neurobiol Learn and Mem 77:63-77, 2002.
28. Kleim J, Swain R, Armstrong K, Napper R, Jones T, Greenough W. Selective synaptic plasticity within the cerebellar cortex following complex motor skill learning. Neurobiol Learn and Mem 69:274-289, 1998.
29. Black J, Isaacs K, Anderson B, Alcantara A, Greenough W. Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats. Proc Natl Acad Sci USA 87:5568-5572, 1990.
30. Chu CJ, Jones TA. Experience-dependent structural plasticity in cortex heterotopic to focal sensorimotor cortical damage. Exp Neurol 166:403-414, 2000.
31. Taub E, Uswatte G, Mark VW, Morris DM. The learned nonuse phenomenon: implications for rehabilitation. Eura Medicophys 42:241-256, 2006.
32. Ekstrand J, Hellsten J, Tingström A. Environmental enrichment, exercise and corticosterone affect endothelial cell proliferation in adult rat hippocampus and prefrontal cortex. Neurosci Lett 442:203-207, 2008.
33. Olson A, Eadie B, Ernst C, Christie B. Environmental enrichment and voluntary exercise massively increase neurogenesis in the adult hippocampus via dissociable pathways. Hippocampus 16:250-260, 2006.
34. Kolb B, Gibb R. Environmental enrichment and cortical injury: behavioral and anatomical consequences of frontal cortex lesions. Cereb Cortex 1:189-198, 1991.
35. Briones T, Woods J, Wadowska M, Rogozinska M, Nguyen M. Astrocytic changes in the hippocampus and functional recovery after cerebral ischemia are facilitated by rehabilitation training. Behav Brain Res 171:17-25, 2006.
36. Jones TA, Chu CJ, Grande LA, Gregory AD. Motor skills training enhances lesion-induced structural plasticity in the motor cortex of adult rats. J Neurosci 19:10153-10163, 1999.
37. Jones T. Multiple synapse formation in the motor cortex opposite unilateral sensorimotor cortex lesions in adult rats. J Comp Neurol 414:57-86, 1999.
38. Allred P, Jones T. Unilateral ischemic sensorimotor cortical damage in female rats: forelimb behavioral effects and dendritic structural plasticity in the contralateral homotopic cortex. Exp Neurol 190:433-445, 2004.
39. DeBow S, Davies M, Clarke H, Colbourne F. Constraint-induced movement therapy and rehabilitation exercises lessen motor deficits and volume of brain injury after striatal hemorrhagic stroke in rats. Stroke 34:1021-1026, 2004.
40. Dancause N, Barbay S, Frost SB, Plautz EJ, Chen D, Zoubina EV, Stowe AM, Nudo RJ. Extensive cortical rewiring after brain injury. J Neurosci 25:10167-10179, 2005.
41. Barton M, Cosentino F, Brandes R, Moreau P, Shaw S, Lüscher T. Anatomic heterogeneity of vascular aging: role of nitric oxide and endothelin. Hypertentension 30:817-824, 1997.
42. Palmer T, Willhoite A, Gage F. Vascular niche for adult hippocampal neurogenesis. J Comp Neurol 425:479-494, 2000.
43. Black J, Polinsky M, Greenough W. Progressive failure of cerebral angiogenesis supporting neural plasticity in aging rats. Neurobiol Aging 10:353-358, 1989.
44. Pereira A, Huddleston D, Brickman A, Sosunov A, Hen R, McKhann G, Sloan R, Gage F, Brown T, Small S. An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci USA 104:5638-5643, 2007.
45. Hattiangady B, Shetty A. Aging does not alter the number or phenotype of putative stem/progenitor cells in the neurogenic region of the hippocampus. Neurobiol Aging 29:129-147, 2006.
46. Piet R, Vargová L, Syková E, Poulain D, Oliet S. Physiological contribution of the astrocytic environment of neurons to intersynaptic crosstalk. Proc Natl Acad Sci USA 101:2151-2155, 2004.
47. Ishibashi T, Dakin K, Stevens B, Lee P, Kozlov S, Stewart C, Fields R. Astrocytes promote myelination in response to electrical impulses. Neuron 49:823-832, 2006.
48. Parri R, Crunelli V. An astrocyte bridge from synapse to blood flow. Nat Neurosci 6:5-6, 2003.
49. Vernadakis A. Glia-neuron intercommunications and synaptic plasticity. Prog Neurobiol 49:185-214, 1996.
50. Kleim J, Markham J, Vij K, Freese J, Ballard D, Greenough W. Motor learning induces astrocytic hypertrophy in the cerebellar cortex. Behav Brain Res 178:244-249, 2007.
51. Kuhn H, Palmer T, Fuchs E. Adult neurogenesis: a compensatory mechanism for neuronal damage. Eur Arch Psychiatry Clin Neurosci 251:152-158, 2001.
52. Christie B, Cameron H. Neurogenesis in the adult hippocampus. Hippocampus 16:199-207, 2006.
53. Eriksson P, Perfilieva E, Björk-Eriksson T, Alborn A, Nordborg C, Peterson D, Gage F. Neurogenesis in the adult human hippocampus. Nat Med 4:1313-1317, 1998.
54. Curtis M, Kam M, Nannmark U, Anderson M, Axell M, Wikkelso C, Holtås S, van Roon-Mom W, Björk-Eriksson T, Nordborg C, Frisén J, Dragunow M, Faull R, Eriksson P. Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science 315:1243-1249, 2007.
55. Gould E, Reeves A, Graziano M, Gross C. Neurogenesis in the neocortex of adult primates. Science 286:548-551, 1999.
56. Jiao J, Feldheim D, Chen D. Ephrins as negative regulators of adult neurogenesis in diverse regions of the central nervous system. Proc Natl Acad Sci USA 105:8778-8783, 2007.
57. Kondo T, Raff M. Oligodendrocyte precursor cells reprogrammed to become multipotent CNS stem cells. Science 289:1754-1757, 2000.
58. Palmer T, Markakis E, Willhoite A, Safar F, Gage F. Fibroblast growth factor-2 activates a latent neurogenic program in neural stem cells from diverse regions of the adult cns. J Neurosci 19:8487-8497, 1999.
59. Magavi EA, Leavitt BR, Macklis JD. Induction of neurogenesis in the neocortex of adult mice. Nature 405:951-955, 2000.
60. Kolb B, Morshead C, Gonzalez C, Kim M, Gregg C, Shingo T. Growth factor-stimulated generation of new cortical tissue and functional recovery after stroke damage to the motor cortex of rats. J Cereb Blood Flow Metab 27:983-997, 2007.
61. Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8:963-970, 2002.
62. Wurm F, Keiner S, Kunze A, Witte OW, Redecker C. Effects of skilled forelimb training on hippocampal neurogenesis and spatial learning after focal cortical infarcts in the adult rat brain. Stroke 38:2833-2840, 2007.
63. Maier I, Baumann K, Thallmair M, Weinmann O, Scholl J, Schwab M. Constraint-induced movement therapy in the adult rat after unilateral corticospinal tract injury. J Neurosci 28:386-9403, 2008.

 
 
 
 
 
 
 
 
 
 
 
 
Está expresamente prohibida la redistribución y la redifusión de todo o parte de los contenidos de la Sociedad Iberoamericana de Información Científica (SIIC) S.A. sin previo y expreso consentimiento de SIIC.
ua31618