(especial para SIIC © Derechos reservados)
Dado que se puede anticipar una escasez crítica de nuevas clases de antibióticos en el futuro cercano, es urgentemente necesario reducir en forma sustancial la tasa de consumo de antibióticos.
Pablo Yagupsky
Columnista Experto de SIIC

University of the Negev

Artículos publicados por Pablo Yagupsky
Recepción del artículo
26 de Octubre, 2008
29 de Septiembre, 2009
Primera edición
29 de Septiembre, 2009
Segunda edición, ampliada y corregida
7 de Junio, 2021

En los últimos años el papel de la comunidad como terreno propicio para los organismos resistentes a los antibióticos ha tenido un creciente reconocimiento. El mal uso de las drogas antimicrobianas para el tratamiento de las infecciones virales, las dosis insuficientes, la toma errática de los antibióticos, el uso de macrólidos de acción prolongada y de antibióticos de amplio espectro y la accesibilidad de antimicrobianos de venta libre son los principales impulsores del incremento de la resistencia. El problema se agrava aun más debido a la reducción de muchos programas de investigación y desarrollo de antibióticos por parte de la industria farmacéutica. Dado que se puede anticipar una escasez crítica de nuevas clases de antibióticos en el futuro cercano, es urgentemente necesario reducir en forma sustancial la tasa de consumo de antibióticos. La educación de los médicos y del público sobre el uso correcto de estas drogas, el desarrollo de métodos de laboratorio rápidos y confiables que permitan diferenciar una infección viral de una bacteriana en el lugar de atención médica, la vacunación amplia con los agentes patógenos frecuentes en pediatría y ofrecer incentivos a la industria farmacéutica para que desarrolle nuevas drogas son factores clave en la lucha contra este problema que amenaza la salud pública.

Palabras clave
resistencia a los antibióticos, consumo de antibióticos, comunidad

Artículo completo

Extensión:  +/-11.94 páginas impresas en papel A4
Exclusivo para suscriptores/assinantes

In recent years the role of the community as a breeding ground for antibiotic-resistant organisms is being increasingly recognized. Misuse of antimicrobial drugs for treating viral infections, insufficient dosage, erratic antibiotic intake, use of long-acting macrolides and broad spectrum antibiotics, and accessibility of over-the-counter antimicrobials are the main drivers of increasing resistance. The problem is further aggravated by the reduction of many antibiotic discovery programs by the pharmaceutical industry. Because a critical shortage of new antibiotic classes can be anticipated in the near future, a substantial reduction in the current antibiotic consumption rates is urgently needed. Education of physicians and the public on the correct use of these drugs, development of rapid and reliable laboratory methods to distinguish between viral and bacterial infections at the point of care, widespread vaccination against common pediatric pathogens, and offering economic incentives to the pharmaceutical industry to develop new drugs are key issues in fighting this threatening public health problem.

Key words
antibiotic resistance, antibiotic consumption, community

Full text
para suscriptores/ assinantes

Clasificación en siicsalud
Artículos originales > Expertos del Mundo >

Principal: Infectología
Relacionadas: Atención Primaria, Cuidados Intensivos, Epidemiología, Farmacología, Geriatría, Medicina Familiar, Medicina Interna, Pediatría

Comprar este artículo
Extensión: 11.94 páginas impresas en papel A4

file05.gif (1491 bytes) Artículos seleccionados para su compra

Enviar correspondencia a:
Pablo Yagupsky, Ben-Gurion University of the Negev Soroka University Medical Center Clinical Microbiology Laboratory, 84101, Beer-Sheva, Israel
Bibliografía del artículo

1. Pier GB. On the greatly exaggerated reports of the death of infectious diseases. Clin Infect Dis 47:1113-1114, 2008.
2. Goossens H, Ferech M, Vander Stichele R, Elseviers M for the ESAC Project Group. Outpatient antibiotic use in Europe and association with resistance; a cross-national database study. Lancet 365:579-587, 2005.
3. Gagliotti C, Morsillo F, Resi D, Milandri M, Moro ML. A three-year population based study of antibiotic treatments for children. Acta Paediatrica 94:1502-1504, 2005.
4. Mainous AG 3rd, Hueston WJ, Davis MP, Pearsons WS. Trends in antimicrobial prescribing for bronchitis and upper respiratory infections among adults and children. Am J Pub Health 93:1910-1914, 2003.
5. Larsson M, Falkenberg T, Dardashti A, Ekman T, Tornquist S, Thi Kim Chuc N, Hansson LO, Kronvall G. Overprescribing of antibiotics to children in rural Vietnam. Scand J Infect Dis 37:442-448, 2005.
6. Blomberg B, Manji KP, Urassa WK, Tamim BS, Mwakagile DS, Jureen R, Msangi V, Tellevik MG, Holberg-Petersen M, Harthug S, Maselle SY, Langeland N. Antimicrobial resistance predicts death in Tanzanian children with bloodstream infections: a prospective cohort study. BMC Infect Dis 7:43, 2007.
7. Livermore DM. Minimizing antibiotic resistance. Lancet Infect Dis 5:450-459, 2005.
8. Martinez JL. Antibiotics and antibiotic resistance genes in natural environments. Science 321:365-367.
9. Maisnier-Patin S, Andersson DI. Adaptation to the deleterious effects of antimicrobial drug resistance mutations by compensatory evolution. Res Microbiol 155:360-369, 2004.
10. Negri MC, Morosini MI, Baquero MR, Campo Rd R, Blazquez J, Baquero F. Very low cefotaxime concentrations select for hypermutable Streptococcus pneumoniae populations. Antimicrob Agents Chemother 46:528-530, 2002.
11. Huang IF, Chiu CH, Wang MH, Wu CY, Hsieh KS, Chiou CC. Outbreak of dysentery associated with ceftriaxone-resistant Shigella sonnei: First report of plasmid-mediated CMY-2-type AmpC beta-lactamase resistance in S. sonnei. J Clin Microbiol 43:2608-2612, 2005.
12. Baquero F, Baquero-Artigao G, Canton R, Garcia-Rey C. Antibiotic consumption and resistance selection in Streptococcus pneumoniae. J Antimicrob Chemother 50:S2, S27-S37, 2002.
13. Volmink J, Garner P. Directly observed therapy for treating tuberculosis. Cochrane Database Syst Rev 17:CD003343, 2007.
14. Patel M, Waites KB, Hoesley CJ, Stamm AM, Canupp KC, Moser SA. Emergence of USA300 MRSA in a tertiary medical center: implications for epidemiological studies. J Hosp Infect 68:271-273, 2008.
15. Bratu S, Eramo A, Kopec R, Coughlin E, Ghitan M, Yost R, Chapnick EK, Landman D, Quale J. Community-associated methicillin-resistant Staphylococcus aureus in hospital nursery and maternity units. Emerg Infect Dis 11:808-813, 2005.
16. McEllistrem MC, Adams JM, Visweswaran S, Khan SA. Detection of very high-level penicillin-resistant variants of the Tennessee (23F)-4 clone via single and serial transformations with four serotype 19A international pneumococcal clones. Microb Drug Resist 11:271-278, 2005.
17. Von Gottberg A, Klugman KP, Cohen C, Wolter N, De Gouveia L, Du Plessis M, Mpembe R, Quan V, Whitelaw A, Hoffmann R, Govender N, Meiring S, Smith AM, Schrag S; Group for Enteric, Respiratory and Meningeal Disease Surveillance in South Africa (GERMS-SA). Emergence of levofloxacin-non-susceptible Streptococcus pneumoniae and treatment for multidrug-resistant tuberculosis in children in South Africa: a cohort observational surveillance study. Lancet 371:1108-1013, 2008.
18. Doern GV, Richter SS, Miller A, Miller N, Rice C, Heilmann K, Beekmann S. Antimicrobial resistance among Streptococcus pneumoniae in the United States: have we begun to turn the corner on resistance to certain antimicrobial classes? Clin Infect Dis 41:139-148, 2005.
19. Reinert RR, Reinert S, van der Linden M, Cil MY, Al-Lahham A, Appelbaum P. Antimicrobial susceptibility of Streptococcus pneumoniae in eight European countries from 2001 to 2003. Antimicrob Agents Chemother 49:2903-2913, 205.
20. Vilhelmsson SE, Tomasz A, Kristinsson KG. Molecular evolution in a multidrug-resistant lineage of Streptococcus pneumoniae: emergence of strains belonging to the serotype 6B Icelandic clone that lost antibiotic resistance traits. J Clin Microbiol 38:1375-1381, 2000.
21. Yagupsky P, Porat N, Fraser D, Prajgrod F, Merires M, McGee L, Klugman KP, Dagan R. Acquisition, carriage, and transmission of pneumococci with decreased antibiotic susceptibility in young children attending a day care facility in southern Israel. J Infect Dis 177:1003-1012, 1998.
22. Leach AJ, Shelby-James TM, Mayo M, Gratten M, Laming AC, Currie BJ, Mathews JD. A prospective study of the impact of community-based azithromycin treatment of trachoma on carriage and resistance of Streptococcus pneumoniae. Clin Infect Dis 24:356-362, 1997.
23. Steiner JF, Sande MA. Antibiotic prescribing for children with colds, upper respiratory tract infections, and bronchitis. J Am Med Assoc 279:875-877, 1998.
24. Gold HS, Moellering RC. Antimicrobial-drug resistance. New Eng J Med 335:1445-1453, 1996.
25. Taubes G. The bacteria fight back. Science 321:356-361, 2008.
26. Spellberg B, Powers JH, Brass EP, Miller LG, Edwards JE Jr. Trends in antimicrobial drug development; implications for the future. Clin Infect Dis 38:1279-1286, 2004.
27. Del Mar C. Prescribing antibiotics in primary care. Br Med J 335:407-8, 2007.
28. Hardin G. The tragedy of the commons. Science 162:1243-1248, 1968.
29. Cosby JL, Francis N, Butler CC. The role of evidence in the decline of antibiotic use for common respiratory infections in primary care. Lancet Infect Dis 7:749-756, 2007.
30. Turner APF, Magan N. Electronic noses and disease diagnostics. Nature Rev 2:161-166, 2004.
31. Apisarnthanarak A, Tunpornchai J, Tanawitt K, Mundy LM. Nonjudicious dispensing of antibiotics by drug stores in Pratumthani, Thailand. Infect Control Hosp Epidemiol 29:572-575, 2008.
32. Rosenstein N, Phillips WR, Gerber MA, Marcy SM, Schwartz B. Common cold: principles of judicious use of antimicrobial agents. Pediatrics 101:181-184, 1998.
33. Dowell SF, Marcy SM, Phillips WR, Gerber MA, Schwartz B. Otitis media: principles of judicious use of antimicrobial agents. Pediatrics 101:165-171, 1998.
34. O'Brien KL, Dowell SF, Schwartz B Marcy SM, Phillips WR, Gerber MA. Acute sinusitis: principles of judicious use of antimicrobial agents. Pediatrics 101:174-177, 1998.
35. Finkelstein JA, Stille C, Nordin J, Davis R, Raebel MA, Roblin D, Go AS, Smith D, Johnson CC, Kleinman K, Chan KA, Platt R. Reduction in antibiotic use among US children. Pediatrics 112:620-627, 2003.
36. Tran D, Muchant D, Aronoff SC. Short-course versus conventional length antimicrobial therapy for uncomplicated lower urinary tract infections in children: a meta-analysis of 1279 patients. J Pediatr 139:93-99, 2001.
37. Pichichero M. Short courses of antibiotic in acute otitis media and sinusitis infections. J Int Med Res 28(Suppl.1):25A-36A, 2000.
38. Casey JR, Pichichero ME. Metaanalysis of short course antibiotic treatment for group A streptococcal tonsillopharyngitis. Pediatr Infect Dis J 24:909-917, 2005.
39. Finkelstein JA, Stille C, Rifas-Shiman SL, Goldmann D. Watchful waiting for acute otitis media: are parents and physicians ready? Pediatrics 115:1466-1473, 2005.
40. Taylor JA, Kwan-Gett TSC, McMahon EM Jr. Effectiveness of a parental educational intervention in reducing antibiotic use in children. A randomized clinical trial. Pediatr Infect Dis J 24:489-93, 2005.
41. Samore MH, Bateman K, Alder SC, Hannah E, Donnelly S, Stoddard GJ, Haddadin B, Rubin MA, Williamson J, Stults B, Rupper R, Stevenson K. Clinical decision support and appropriateness of antimicrobial prescribing. A randomized trial. J Am Med Assoc 294:2305-2314, 2005.
42. Dagan R, Givon-Lavi N, Zamir O, Fraser D. Effect of a nonavalent conjugate vaccine on carriage of antibiotic-resistant Streptococcus pneumoniae in day-care centers. Pediatr Infect Dis J 22:532-540, 2003.

Está expresamente prohibida la redistribución y la redifusión de todo o parte de los contenidos de la Sociedad Iberoamericana de Información Científica (SIIC) S.A. sin previo y expreso consentimiento de SIIC.