Crónicas de autores

Rafael Eliecer González Landaeta *

Autor invitado por SIIC


DETECCIÓN DE LA FRECUENCIA RESPIRATORIA MEDIANTE UN SISTEMA DE MEDIDA BASADO EN EL TIEMPO

Se ha podido detectar la respiración de un sujeto mediante un sensor resistivo conectado directamente a un microcontrolador. El sistema ha sido capaz de extraer la señal respiratoria a partir de una señal modulada en el tiempo sin necesidad de etapas de acondicionamiento analógico ni convertidores analógico-digitales.

*Rafael Eliecer González Landaeta
describe para SIIC los aspectos relevantes de su trabajo
RESPIRATORY RATE DETECTION BY A TIME-BASED MEASUREMENT SYSTEM
Revista Mexicana de Ingeniería Biomédica,
37(2):91-99 May, 2016

Esta revista, clasificada por SIIC Data Bases, integra el acervo bibliográfico
de la Biblioteca Biomédica (BB) SIIC.

Institución principal de la investigación
*Universidad Autonoma de Ciudad Juarez, Ciudad Juarez, México
Imprimir nota
Referencias bibliográficas
Schäfer A, et al. Estimation of breathing rate from respiratory sinus arrhythmia: comparison of various methods. Ann of Biomed Eng 36(3):476-485, 2008.
Karlen W, et al. Multiparameter respiratory rate estimation from the photoplethysmogram. IEEE Trans on Biomed Eng 60(7):1946-1953, 2013.
Chan AM, et al. Ambulatory respiratory rate detection using ECG and triaxial accelerometer. In 35th Conf of the IEEE Eng in Med and Biol Soc, Osaka, 24058-4061, 2013.
Carskadon MA, et al. Respiration during sleep in children. Western Journal of Medicine 128:477-481, 1978.
American Thoracic Socienty. Standards and indications for cardiopulmonary sleep studies in children. Am J Respir Crit Care Med 153(2):866-878, 1996.
Dinç AE, et al. Reliability of SleepStrip as a screening test in obstructive sleep apnea patients. Eur Arch of Otorhinolaryngol 271(10):1-6, 2014.
Tan HL, et al. Overnight polysomnography versus respiratory polygraphy in the diagnosis of pediatric obstructive sleep apnea. Sleep 37(2):255-260, 2014.
Pallàs-Areny R, Webster JG. Sensors and signal conditioning, 2nd edition, John Wiley & Sons, New York, pp. 94-109, 2001.
Cuadras A, Casas O. Determination of heart rate using a high-resolution temperature measurement. IEEE Sensors J, 6(3,):836-843, 2006.
Sifuentes E, et al. Direct interface circuit to linearise resistive sensor bridges. Sensors and Actuators A 147(1)210-215, 2008.
Jordana J, Pallàs-Areny R. A simple, efficient interface circuit for piezoresistive pressure sensors. Sensors and Actuators A 127(1):69-73, 2006.
Sifuentes E, et al. Wireless magnetic sensor node for vehicle detection with optical wake-up. IEEE Sensors J 11(8):1669-1676, 2011.
Brown BH, et al. Medical physics and biomedical engineering. Institute of Physics, Madison, pp. 548-577, 2001.
Toba E, et al. Non-invasive measurement system for human respiratory condition and body temperature.In IEEE Int Conf on MFI, Las Vegas NV, pp. 770-783, 1994.
Storck K, et al. Heat transfer evaluation of the nasal thermistor technique. IEEE Trans on Biomed Eng 43(12):1187-1191, 1996.
Farre R, et al. Accuracy of thermistors and thermocouples as flow-measuring devices for detecting hypopnoeas. Eur Respir J 11(1):179-182, 1998.
Sifuentes E, et al. Improved direct interface circuit for resistive full-and half-bridge sensors.In IEEE, 4th Int Conf on Electrical and Electronics Engineering, ICEEE 2007, México, pp. 197-200, 2007.
Reverter F. The art of directly interfacing sensors to microcontrollers. Low Power Electronics and Applications J. 2(4):265-281, 2012.
Nihtianov S, et al. Smart sensors and MEMS: intelligent devices and microsystems for industrial applications. 1st edition Woodhead Publishing, Chap 2, pp. 27-62, 2014.
LDT1-028K Shielded Piezo Sensors, Measurement Specialties, Hampton, VA, pp. 1-3, 2009.


ua40317