siiclogo2c.gif (4671 bytes)
ASPECTOS ACTUALES DEL TRATAMIENTO ANTIBIOTICO Y LA LIBERACION DE ENDOTOXINAS
(especial para SIIC © Derechos reservados)
Autor:
René Gordon Holzheimer
Columnista Experto de SIIC

Institución:
Martin Luther -University Halle

Artículos publicados por René Gordon Holzheimer 
Recepción del artículo: 27 de abril, 2005
Aprobación: 3 de mayo, 2005
Conclusión breve
En el tratamiento de las infecciones graves la liberación de endotoxinas varía de acuerdo con el antibiótico empleado.

Resumen

La endotoxina es una de las causas principales de sepsis e insuficiencia multiorgánica en los seres humanos. Los antibióticos que se administran para tratar estas infecciones graves pueden liberar endotoxina de la pared bacterial y afectar al paciente. Se consideraba que los antibióticos específicos de la proteína ligadora de penicilina (PLP) 2, por ejemplo, imipenem, liberaban menores cantidades de endotoxina libre que los antibióticos específicos de la PLP 3, como la ceftazidima. Este efecto contribuye al aumento de la actividad bactericida de los antibióticos específicos de la PLP 2, con los consiguientes cambios en la morfología de los patógenos, lo que posibilita la fagocitosis. Sin embargo, recientes estudios in vitro no pudieron repetir estos resultados. La liberación de endotoxina inducida por antibióticos puede cambiar con el tipo de patógeno y la dosificación del antibiótico. En estudios con animales, la liberación de endotoxina no se correlacionó con el efecto bactericida en todos los experimentos. La liberación de endotoxina inducida por antibióticos, así como los resultados, fue diferente según los modelos con animales, la localización de la infección, las cepas, la farmacodinamia y la dosificación del antibiótico. Los antibióticos bacteriostáticos, como lincomicina y clindamicina, indujeron la liberación de endotoxina. En algunos estudios la liberación de endotoxina inducida por imipenem fue similar a la causada por ceftazidima y mayor que la inducida por ciprofloxacina. Las tetraciclinas modificadas químicamente y la combinación de antibióticos evitaron el aumento en la liberación de endotoxinas. En pacientes con urosepsis se observaron resultados controvertidos al comparar imipenem con ceftazidima. En estudios clínicos de observación o en los análisis post hoc de ensayos clínicos aleatorizados se informaron diferencias en la liberación de endotoxina luego de la administración de imipenem y cefalosporinas. En conclusión, la liberación de endotoxina inducida por antibióticos podría ser clínicamente relevante. No obstante, en los estudios clínicos pueden interferir muchos factores que deben ser abordados debidamente cuando se analizan los estudios acerca de este tema.

Palabras clave
Liberación de endotoxina inducida por antibióticos, lipopolisacáridos

Clasificación en siicsalud
Artículos originales> Expertos del Mundo>
página www.siicsalud.com/des/expertos.php/73804

Especialidades
Principal: InfectologíaMedicina Farmacéutica
Relacionadas: Cuidados IntensivosFarmacologíaMedicina Interna

Enviar correspondencia a:
René Holzheimer. Blombergstrasse 5 D-82054 Sauerlach (Munich) Alemania


CURRENT ASPECTS OF ANTIBIOTIC TREATMENT AND ENDOTOXIN RELEASE

Abstract
Endotoxin is a major cause of sepsis and organ failure in humans. Antibiotics, which are administrated to treat these severe infections, may release Endotoxin from the bacterial wall and may harm the patient. Penicillin-binding protein (PBP) 2-specific antibiotics, e.g., imipenem were considered to release less amounts of free Endotoxin than PBP 3-specific antibiotics, e.g., Ceftazidime. This effect has been contributed to an increased bactericidal activity of PBP 2-specific antibiotics and consecutive change in morphology of pathogens, enabling phagocytosis. Recent in vitro studies, however, were unable to repeat these results. The antibiotic-induced Endotoxin release may change with the type of pathogen and dosing of the antibiotic. In animal studies Endotoxin release did not show a correlation to the bactericidal effect in all experiments. Antibiotic-induced Endotoxin release and outcome was different with regard to animal models, location of infection, strains, pharmocodynamics and dosage of antibiotics. Bacteriostatic antibiotics, e.g., lincomycin and clindamycin, were able to induce Endotoxin release. In some studies imipenem caused either similar release of Endotoxin compared to ceftazidime or more compared to ciprofloxacin. Chemically modified tetracycline or combination of antibiotics prevented an increased Endotoxin release. In patients with urosepsis controversial results were observed when imipenem was compared to ceftazidime. In clinical observational studies or post-hoc analysis of a randomized clinical trial a differential release of Endotoxin after imipenem and cephalosporins has been reported. In conclusion, antibiotic-induced Endotoxin release may be clinically relevant. However, there are many interfering factors in clinical studies, which need to be addressed properly when analyzing studies on antibiotic-induced Endotoxin release.


Key words
Antibiotic-induced endotoxin release, LPS


ASPECTOS ACTUALES DEL TRATAMIENTO ANTIBIOTICO Y LA LIBERACION DE ENDOTOXINAS

(especial para SIIC © Derechos reservados)
Artículo completo
La endotoxina es una de las causas principales de sepsis por gramnegativos en los seres humanos.1 El significado clínico de la endotoxina y su relación con la mortalidad fueron demostrados en diversos estudios.2-6 Revisiones recientes analizaron la fiebre inducida por drogas –por ejemplo, antibióticos– como posible causa de la fiebre de origen desconocido.7,8 Desde que Jackson y Kropp (1992) demostraron que los antibióticos específicos de la proteína ligadora de penicilina (PLP) 2 (imipenem) pueden liberar menores cantidades de endotoxina libre que los antibióticos específicos de la PLP 3 (ceftazidima), que se asocian con la formación de filamentos por parte del patógeno, se ha asumido que el potencial de los antibióticos para liberar endotoxina e influir en la evolución de los pacientes con sepsis podría ser diferente. Sin embargo, otros componentes de la pared bacteriana como el ácido lipoteicoico (LTA), podrían estar involucrados en la respuesta del huésped luego del tratamiento antibiótico.10
Estudios in vitro
Se realizaron muchos estudios in vitro con diferentes patógenos y antibióticos. El efecto de la penicilina se investigó en Neisseria meningitidis, estreptococos del grupo A, Staphylococcus aereus, Meningococcus y Streptococcus faecium. En la mayoría de los ensayos, la penicilina liberó lipopolisacáridos (LPS), LTA, interleuquina 1 (IL-1) y factor de necrosis tumoral alfa (FNT alfa) (tabla 1).



El efecto de la terapia con aminoglucósidos en la liberación de endotoxina se estudió principalmente en E. coli, K. pneumoniae, P. aeruginosa, H. influenzae, E. cloacae, S. aureus, Salmonella spp. y Neisseria spp. Según qué patógeno se analizara, la gentamicina fue capaz de aumentar o disminuir la liberación de endotoxina o de no mostrar efecto en comparación con los controles. La mayoría de los estudios demostraron la disminución de la liberación de FNT alfa luego del tratamiento con aminoglucósidos. La tobramicina causó una disminución de liberación de LPS y la amikacina indujo una disminución de la liberación de LPS y de FNT (tabla 2). En la mayoría de los estudios el imipenem, el compuesto mejor estudiado fue capaz de disminuir la liberación de endotoxina o la liberación de FNT alfa e IL-6. Sin embargo, en estudios recientes,35,39 el imipenem incrementó la liberación de endotoxina y FNT alfa o bien no tuvo efecto alguno. (tabla 3).






La ceftazidima es el compuesto que se utiliza en la mayor parte de los estudios in vitro sobre la liberación de endotoxina. En la mayoría de las investigaciones los niveles de endotoxina o de citoquinas proinflamatorias, como el FNT alfa, IL-6 e IL-1, aumentaron cuando se empleó la ceftazidima para el tratamiento. No obstante, este antibiótico disminuyó la liberación de LPS de P. aeruginosa 25 o no mostró diferencias al ser comparado con los controles37,49 (tabla 4).



La ciprofloxacina y la ofloxacina son las quinolonas mejor estudiadas. En algunos estudios recientes la ciprofloxacina y la ofloxacina fueron responsables de la disminución de la liberación de endotoxina o de la liberación de FNT alfa e Il-6. No obstante, algunos investigadores comunicaron el incremento en la liberación de endotoxina o de citoquinas inflamatorias o de ambas17,21,24,28,29 (tabla 5).



La clindamicina y la eritromicina fueron capaces de reducir la liberación de LPS y citoquinas proinflamatorias en patógenos gramnegativos, pero también la liberación de LTA y citoquinas proinflamatorias en patógenos grampositivos en la mayoría de los estudios (tabla 6).



Estudios en animales
Se consideraba que las cepas que liberan endotoxina eran más virulentas.11 En 1984 Shenep observó el aumento de los niveles plasmáticos de endotoxina luego de la administración de antibióticos.63 En 1986, Walterspiel demostró que las dosis subinhibidoras de polimixina B modulan los efectos letales de los LPS.64 Shenep (1985) postuló que la liberación de LPS depende de la clase de antibiótico y no se correlaciona con el índice de destrucción bacteriana.20 Johnston informó en 1984 que el nivel de endotoxemia era mayor en los sobrevivientes tratados con antibióticos que en los animales moribundos que no habían sido tratados.65
El pretratamiento en los estudios animales
La descontaminación antibiótica selectiva conduce al incremento de los niveles de LPS.66,67 El pretratamiento con agentes que alteran el contenido intestinal redujo la endotoxemia y la mortalidad.68 El aumento en la liberación de FNT puede asociarse con la mejoría de la respuesta hemodinámica pero no con el aumento de la mortalidad.69 El pretratamiento con eritromicina puede tener efectos beneficiosos en la infección por Candida albicans.70
Modo de aplicación y localización de la infección
El mecanismo de acción de las clases de antibióticos no es el único factor que influye en la liberación de LPS, también lo hacen la dosificación y la farmacodinamia.71 Se demostró que el imipenem aplicado en forma tópica ejerce un efecto bactericida notable, pero también aumenta la liberación de LPS y FNT alfa.72 El meropenem puede incrementar la liberación de LPS y la mortalidad, mientras que el imipenem ejerce el efecto contrario.45 Los cambios morfológicos provocados por el tratamiento con imipenem pueden facilitar la fagocitosis por las células peritoneales.73 En un modelo de lesiones por quemaduras el imipenem liberó menor cantidad de LPS pero no hubo relación con el efecto bactericida.74 El imipenem indujo niveles más altos de LPS en las infecciones por B. fragilis y Fusobacterium spp.75 El efecto bactericida podría no influir en la liberación de LPS: el poder bactericida del imipenem y la ceftazidima fue similar en modelos de ratas con sepsis, pero la liberación de LPS fue menor luego del tratamiento con imipenem.76 En 2003, Tsuji y col. demostraron que el imipenem, el doripenem, el meropenem y la ceftazidima indujeron niveles séricos similares de LPS.37 El tratamiento en animales con infección intraabdominal condujo al aumento en la supervivencia y a la disminución de los niveles de citoquinas en plasma y en el líquido peritoneal. La liberación de LPS fue mayor luego del tratamiento con imipenem que luego del tratamiento con ciprofloxacina.77
Meningitis
En la meningitis, cefotaxima, cefpiroma, meropenem y gentamicina inducen la liberación de endotoxina. Sin embargo, los animales que no fueron tratados presentaron niveles de endotoxina más altos.78 En la infección del oído medio por H. influenzae no se observó la liberación de endotoxina luego del tratamiento con ceftriaxona.79 En conejos con meningitis por S. pneumoniae, el inicio de la terapia con clindamicina (inhibición de la síntesis de proteína) y la continuación con una combinación de ceftriaxona (antibiótico betalactámico) disminuyó el daño neuronal.62 Esto fue avalado por un estudio posterior realizado por Bottcher (2004).80
Tratamiento antibiótico combinado y bacteriostático
Los antibióticos bacteriostáticos (lincomicina y clindamicina) inducen la liberación de LPS si se los compara con la ausencia de tratamiento.58 La doxiciclina ejerce su efecto protector al inhibir la producción de nitratos en el modelo de LPS de ratón BALB.81 Estudios recientes investigaron el efecto de otros compuestos, como los, inhibidores de las metaloproteinasas de matriz –tetraciclina químicamente modificada– que evitan el daño pulmonar agudo luego de la cirugía de bypass cardiopulmonar.82 Estos compuestos pueden preservar la función mecánica cardíaca durante el shock séptico.83 La combinación del tratamiento con otros compuestos neutralizadores de la endotoxina, por ejemplo las lipopoliaminas84 o la proteína que aumenta la permeabilidad bactericida (BPI21)85 pueden ayudar a evitar el incremento de la liberación de LPS inducido por las cefalosporinas y mejorar la supervivencia. Los ratones inoculados con E. coli muestran cambios en la producción de citoquinas inducida por LPS y tienen mayor supervivencia cuando se realiza el pretratamiento con clindamicina.86 Los antibióticos causaron cambios de aproximadamente 500 veces en la LD50 en un modelo de infección por E. coli en ratones.87 En 2003, Tsumura demostró en un modelo con conejos inoculados con E. coli que el flomoxef y la gentamicina reducen in vivo los niveles plasmáticos de LPS, FNT alfa y el recuento bacteriano en sangre, a niveles comparables. La liberación de LPS puede no ser un problema si se utilizan los agentes antimicrobianos apropiados.37
Estudios clínicos
En 1983 Teklu informó los efectos beneficiosos del meptazinol, un antagonista opioide con propiedades agonistas, que disminuyó la reacción de Jarish- Herxheimer luego del tratamiento con tetraciclina en un estudio aleatorizado en pacientes con fiebre por tifus exantemático.88
Meningitis
En la meningitis por H. influenzae el tratamiento con ceftriaxona conduce a la liberación de LPS libres con una respuesta inflamatoria asociada.89 La gentamicina administrada por vía intraventricular puede producir la liberación de LPS y resultar en el incremento de las concentraciones de IL-1 y en la evolución desfavorable de los pacientes con meningitis por Escherichia coli.90
Urosepsis
Se realizaron muchos estudios con pacientes con urosepsis. La liberación de LPS y los niveles séricos y urinarios de citoquinas son menores con imipenem si se lo compara con ceftazidima.91 En pacientes con pielonefritis aguda se observó incremento de la liberación de endotoxina y FNT. Esto puede ser la causa de la persistencia de la fiebre a pesar de los hemocultivos negativos.92 En ensayos controlados y aleatorizados con pacientes con urosepsis por gramnegativos no se observaron diferencias en la endotoxina plasmática y las citoquinas proinflamatorias dentro de las primeras 8 horas luego del tratamiento antibiótico con imipenem o ceftazidima.93
Pacientes quirúrgicos y con traumatismos internados en cuidados intensivos
En los pacientes con traumatismos los antibióticos relacionados con mayor liberación de endotoxina y FNT (aztreonam, ceftazidima y cefotaxima) se asociaron con mayor liberación de endotoxina, de FNT y mayor mortalidad.4 En los pacientes quirúrgicos internados en cuidados intensivos se observó el incremento significativo en los niveles plasmáticos de endotoxina luego del tratamiento con cefotaxima y ceftriaxona en comparación con ciprofloxacina, tobramicina e imipenem.94 Los pacientes sometidos a resección hepática no mostraron aumento en los niveles plasmáticos de endotoxina en sangre periférica luego del tratamiento con cefmetazol, latamoxef, flomoxef, cefazolina, cefoperazona y cefotiam. Los autores concluyeron que la endotoxina había sido removida de la sangre.95 En 2001, Byl y col. observaron un efecto similar en la liberación de endotoxina y citoquinas en las infecciones por gramnegativos en pacientes tratados con imipenem y ceftazidima.96 Maskin informó concentraciones plasmáticas elevadas de LPS, IL-6 y FNT alfa en pacientes sépticos luego del tratamiento con ceftazidima e imipenem. No obstante, los niveles plasmáticos del FNT alfa fueron significativamente menores a las 4 horas luego de la administración de imipenem.97 En la reparación del aneurisma aórtico, un modelo clínico de daño-reperfusión asociado con la liberación de endotoxina, la profilaxis con ofloxacina oral produjo la alteración de la capacidad neutralizadora de la endotoxina y de los niveles plasmáticos de IL-6, pero no tuvo efectos sobre los niveles plasmáticos de endotoxina y sobre otros mediadores de la inflamación.98 En la melioidosis causada por Burkholderia pseudomallei el tratamiento con imipenem redujo la liberación de endotoxina en plasma sin afectar la supervivencia.99 En pacientes con quemaduras la liberación de endotoxina y de FNT aumentó 2 horas después del tratamiento con cefoperazona en comparación con el imipenem100 (tabla 7).



Sinopsis
La endotoxina es una de las causas principales de sepsis e insuficiencia multiorgánica en seres humanos. Si bien se administran antibióticos para tratar estas infecciones graves, estos agentes también pueden provocar daño si no se emplean correctamente o pueden producir la liberación de endotoxina de las paredes bacterianas, que a su vez puede afectar al paciente. Se consideraba que los antibióticos específicos de la proteína ligadora de penicilina (PLP) 2, como el imipenem, liberaban menores cantidades de endotoxina libre que los antibióticos específicos de la PLP 3 como ceftazidima. Este efecto contribuyó al incremento de la actividad bactericida de los antibióticos específicos de la PLP 2 y a los cambios consiguientes en la morfología de los patógenos, lo cual permitió la fagocitosis. Sin embargo, estudios recientes realizados in vitro no fueron capaces de reproducir estos resultados. La liberación de endotoxina inducida por los antibióticos puede depender de la cepa y la dosis de las drogas. En ensayos efectuados en animales, la liberación de endotoxina no estuvo influida por el efecto bactericida. La liberación de endotoxina inducida por los antibióticos y los resultados fueron diferentes según los modelos con animales, la localización de la infección, las cepas, la farmacodinamia y las dosis de las drogas. Los antibióticos bacteriostáticos como lincomicina y clindamicina provocaron la liberación de endotoxinas. En algunos estudios, el imipenem produjo una liberación de endotoxina similar a ceftazidima o mayor en comparación con ciprofloxacina. Las tetraciclinas modificadas químicamente o los antibióticos combinados evitaron el aumento en la liberación de endotoxinas. En pacientes con urosepsis se observaron resultados controvertidos cuando el imipenem se comparó con ceftazidima. En los ensayos clínicos de observación o en los análisis post hoc se informaron diferencias en la liberación de endotoxina después de la administración de imipenem y cefalosporinas. En conclusión, la liberación de endotoxinas inducida por antibióticos puede ser clínicamente relevante. El análisis de los estudios clínicos que no pudieron demostrar el efecto de la liberación de endotoxinas inducido por antibióticos puede contribuir a planificar ensayos futuros.
El autor no manifiesta “conflictos de interés.”
Bibliografía del artículo
  1. Van Leeuwen PA, Boermeester MA, Houdijk AP et al. Clinical significance of translocation. Gut 1994; 35(1 Suppl):S28-34.
  2. Svoboda P, Kantorova I, Ochmann J. Dynamics of interleukin 1, 2, and 6 and tumor necrosis factor alpha in multiple trauma patients. J Trauma 1994; 36(3):336-40.
  3. Holzheimer RG, Schein M, Wittmann DH. Inflammatory response in peritoneal exudate and plasma of patients undergoing planned relaparotomy for severe secondary peritonitis. Arch Surg 1995; 130(12):1314-9.
  4. Mock CN, Jurkovich GJ, Dries DJ et al. Clinical significance of antibiotic endotoxin-releasing properties in trauma patients. Arch Surg 1995; 130(11):1234-40.
  5. Van Deuren M, Van der Ven-Jongekrijg J, Bartelink AK et al. Correlation between proinflammatory cytokines and antiinflammatory mediators and the severity of disease in meningococcal infections. J Infect Dis 1995; 172(2):433-9.
  6. Kelly JL, O’Sullivan C, O’Riordain M et al. Is circulating endotoxin the trigger for the systemic inflammatory response syndrome seen after injury Ann Surg 1997; 225(5):530-41.
  7. Amin K, Kauffman CA. Fever of unknown orignin. Postgrad Med 2003; 114(3):69-75.
  8. Roth AR, Basello GM. Approach to the adult patient with fever of unknown origin. Am Fam Physician 2003; 68(119):2223-8.
  9. Jackson JJ, Kropp H. beta-Lactam antibiotic-induced release of ree endotoxin: in vitro comparison of penicillin-binding protein (PBP) 2-specific imipenem and PBP 3-specificic ceftazidime. J Infect Dis 1992; 165(6):1033-41.
  10. Ginsburg I. Role of lipoteichoic acid in infection and inflammation. Lancet Infect Dis 2002; 2(3):171-9.
  11. Andersen BM, Solberg O. Release of endotoxin from Neisseria meningitides. A short survey with a preliminary report on virulence in mice. NIPH Ann 1980; 3(2):49-55.
  12. Kessler RE, Van de Rijn I. Effects of penicillin on group A streptococci: loss of viability appears to precede stimulation of release of lipoteichoic acid. Antimicrob Agents Chemother 1981; 19(1):39-43.
  13. Gold MR, Miller CL, Mishell RI. Soluble non-cross-linked peptidoglycan polymers stimulate monocyte-macrophage inflammatory function. Infect Immun 1985; 49(3):731-741.
  14. Nealon TJ, Beachey EH, Courtney HS et al.Release of fibronectin-lipoteichoic acid complexes from group A streptococci with penicillin. Infect Immun 1986; 51(2):529-35.
  15. Kiriyama T, Miyake Y, Sugai M et al. Effects of mucopolysaccharides on penicillin-induced lysis of Staphylococcus aureus. J Med Microbiol 1987; 24(4):325-331.
  16. Mellado MC, Rodríguez Contreras R, Mariscal A et al. Effect of penicillin and chloramphenicol on the growth and endotoxin release by N. meningitides. Epidemiol Infect 1991; 106(2):283-288.
  17. Iino Y, Toriyama M, Kudo K et al. Erythromycin inhibition of lipopolysaccharide-stimulated tumor necrosis factor alpha production by human monocytes in vitro. Ann Otol Rhinol Laryngol Suppl 1992; 157:16-20.
  18. Prins JM, Speelman P, Kuijper EJ et al. No increase in endotoxin release during antibiotic killing of meningococci. J Antimicrob Chemother 1997; 39(1):13-18.
  19. Rusmin S, DeLuca PP. Effect of antibiotics and osmotic change on the release of endotoxin by bacteria retained on intravenous inline filters. Am J Hosp Pharm 1975; 32(4):378-80.
  20. Shenep JL, Barton RP, Mogan KA. Role of antibiotic class in the rate of liberation of endotoxin during therapy for experimental gram-negative bacterial sepsis. J Infect Dis 1985; 151(6):1012-8.
  21. Cohen J, McConnell JS. Release of endotoxin from bacteria exposed to ciprofloxacin and its prevention with polymyxin B. Eur J Clin Microbiol 1986; 5(1):13-7.
  22. Stokes DC, Shenep JL, Fishman M et al. Polymyxin B prevents lipopolysaccharide-induced release of tumor necrosis factor-alpha from alveolar macrophages. J Infect Dis 1989; 160(1):52-7.
  23. Simon DM, Koenig G, Trenholme GM. Differences in release of tumor necrosis factor from THP-1 cells stimulated by filtrates of antibiotic-killed Escherichia coli. J Infect Dis 1991; 164(4):800-2.
  24. Bingen E, Goury V, Bennani H et al. Bactericidal activity of beta-lactams and amikacin against Haemophilus influenzae: effect on endotoxin release. J Antimicrob Chemother 1992; 30(2):165-72.
  25. Van den Berg C, de Neeling AJ, Schot CS et al. Delayed antibiotic-induced lysis of Escherichia coli in vitro is correlated with enhancement of LPS release. Scand J Infect Dis 1992; 24(5):619-27.
  26. Eng RH, Smith SM, Fan-Havard P et al. Effect of antibiotics on endotoxin release from gram-negative bacteria. Diagn Microbiol Infect Dis 1993; 16(3):185-9.
  27. Evans ME, Pollack M. Effect of antibiotic class and concentration on the release of lipopolysaccharide from Escherichia coli. J Infect Dis. 1993; 167(6):1336-43.
  28. Crosby HA, Bion JF, Penn CW et al. Antibiotic-induced release of endotoxin from bacteria in vitro. J Med Microbiol 1994; 40(1):23-30.
  29. Prins JM, Kuijper EJ, Mevissen ML et al. Release of tumor necrosis factor alpha and interleukin 6 during antibiotic killing of Escherichia coli in whole blood: influence of antibiotic class, antibiotic concentration, and presence of septic serum. Infect Immun 1995; 63(6):2236-42.
  30. Lamp KC, Rybak MJ, McGrath BJ et al. Influence of antibiotic and E5 monoclonal immunoglobulin M interactions on endotoxin release from Escherichia coli and Pseudomonas aeruginosa. Antimicrob Agents Chemother 1996; 40(1):247-52.
  31. Van Langevelde P, Van Dissel JT, Ravensberger E et al. Antibiotic-induced release of lipoteichoic acid and peptidoglycan from Staphylococcus aureus: quantitative measurements and biological reactivities. Antimicrob Agents Chemother 1998; 42(12):3073-8.
  32. Trautmann M, Zick R, Rukavina T et al. Antibiotic-induced release of endotoxin: in-vitro comparison of meropenem and other antibiotics. J Antimicrob Chemother 1998; 41(2):163-9.
  33. Sjolin J, Goscinski G, Lundholm M et al. Endotoxin release from Escherichia coli after exposure to tobramycin: dose-dependency and reduction in cefuroxime-induced endotoxin release. Clin Microbiol Infect 2000; 6(2):74-81.
  34. Xu N, Yuan J, Xiao G et al. An experimental study on the release of endotoxin from gram negative bacteria induced by antibiotics. Zhonghua Shao Shang Za Zhi 2001; 17(2):75-9.
  35. Bentley AP, Barton MH, Lee MD et al. Antimicrobial-induced endotoxin and cytokine activity in an in vitro model of septicemia in foals. Am J Vet Res 2002; 63(5):660-8.
  36. Krehmeier U, Bardenheuer M, Voggenreiter G et al. Effects of antimicrobial agents on spontaneous and endotoxin-induced cytokine release of human peripheral blood mononuclear cells. J Infect Chemother 2002; 8(2):194-7.
  37. Tsumura H, Hiyama E, Kodama T et al. Relevance of antimicrobial agent-induced endotoxin release from in vitro cultured Escherichia coli and in vivo experimental infection with Gram-negative bacilli. Int J Antimicrob Agents 2003; 21(5):463-70.
  38. Goscinski G, Lundholm M, Odenholt I et al. Variation in the propensity to release endotoxin after cefuroxime exposure in different gram-negative bacteria: uniform and dose-dependent reduction by the addition of tobramycin. Scand J Infect Dis 2003; 35(1):40-6.
  39. Tsuji M, Matsuda H, Miwa H et al. Antimicrobial-induced release of endotoxin from Pseudomonas aeruginosa: comparison of in vitro and animal models. J Antimicrob Chemother 2003; 51(2):353-9.
  40. Dofferhoff AS, Nijland JH, De Vries-Hospers HG et al. Effects of different types and combinations of antimicrobial agents on endotoxin release from gram-negative bacteria: an in-vitro and in-vivo study. Scand J Infect Dis 1991; 23(6):745-54.
  41. Arditi M, Kabat W, Yogev R. Antibiotic-induced bacterial killing stimulates tumor necrosis factor-alpha release in whole blood. J Infect Dis 1993; 167(1):240-4.
  42. Dofferhoff AS, Esselink MT, De Vries-Hospers HG et al. The release of endotoxin from antibiotic-treated Escherichia coli and the production of tumour necrosis factor by human monocytes. J Antimicrob Chemother 1993; 31(3):373-84.
  43. Yokochi T, Kusumi A, Kido N et al. Differential release of smooth-type lipopolysaccharide from Pseudomonas aeruginosa treated with carbapenem antibiotics and its relation to production of tumor necrosis factor alpha and nitric oxide. Antimicrob Agents Chemother 1996; 40(10):2410-2.
  44. Inoue E, Komoto E, Taniyama Y et al. Antibacterial activity of sulopenem, a new parenteral penem antibiotic. Jpn J Antibiot 1996; 49(4):338-51.
  45. Narita K, Koide N, Morikawa A et al. Differential release of endotoxin from Pseudomonas aeruginosa treated with beta-lactam antibiotics and its effect on the lethal activity. Jpn J Med Sci Biol 1997; 50(6):233-9.
  46. Arditi M, Zhou J. Differential antibiotic-induced endotoxin release and interleukin-6 production by human umbilical vein endothelial cells (HUVECs): amplification of the response by coincubation of HUVECs and blood cells. J Infect Dis 1997; 175(5):1255-8.
  47. Takahashi K, Narita K, Kato Y et al. Low-level release of Shiga-like toxin (verocytotoxin) and endotoxin from enterohemorrhagic Escherichia coli treated with imipenem. Antimicrob Agents Chemother 1997; 41(10):2295-6.
  48. Van Langevelde P, Kwappenberg KM, Groeneveld PH, Mattie H, van Dissel JT. Antibiotic-induced lipopolysaccharide (LPS) release from Salmonella typhi: delay between killing by ceftazidime and imipenem and release of LPS. Antimicrob Agents Chemother 1998; 42(4):739-43.
  49. Horii T, Kobayashi M, Sato K et al. An in-vitro study of carbapenem-induced morphological changes and endotoxin release in clinical isolates of gram-negative bacilli. J Antimicrob Chemother 1998; 41(4):435-42.
  50. Trautmann M, Heinemann M, Zick R et al. Antibacterial activity of meropenem against Pseudomonas aeruginosa, including antibiotic-induced morphological changes and endotoxin-liberating effects. Eur J Clin Microbiol Infect Dis 1998; 17(11):754-60.
  51. Yamaguchi S, Sato S, Toriya M et al. Effects of isepamicin and beta-lactam antibiotics on the release of endotoxin from Pseudomonas aeruginosa. Jpn J Antibiot 1999; 52(1):41-56.
  52. Trautmann M, Heinemann M, Moricke A et al. Endotoxin release due to ciprofloxacin measured by three different methods. J Chemother 1999; 11(4):248-54.
  53. Horii T, Ichiyama S, Ohta M et al. Relationship between morphological changes and endotoxin release induced by carbapenems in Pseudomonas aeruginosa. J Med Microbiol. 1999; 48(3):309-15.
  54. Cui W, Morrison DC, Silverstein R. Differential tumor necrosis factor alpha expression and release from peritoneal mouse macrophages in vitro in response to proliferating gram-positive versus gram-negative bacteria. Infect Immun 2000; 68(8):4422-9.
  55. Bucklin SE, Fujihara Y, Leeson MC et al. Differential antibiotic-induced release of endotoxin from gram-negative bacteria. Eur J Clin Microbiol Infect Dis 1994; 13 Suppl 1:S43-51.
  56. Leeson MC, Fujihara Y, Morrison DC. Evidence for lipopolysaccharide as the predominant proinflammatory mediator in supernatants of antibiotic-treated bacteria. Infect Immun. 1994; 62(11):4975-80.
  57. Kishi K, Hirai K, Hiramatsu K et al. Clindamycin suppresses endotoxin released by ceftazidime-treated Escherichia coli 055:B5 and subsequent production of tumor necrosis factor alpha and interleukin-1 beta. Antimicrob Agents Chemother 1999; 43(3):616-622.
  58. Horii T, Kimura T, Nadai M et al. Lincomycin-induced endotoxin release in Escherichia coli sepsis: evidence for release in vitro and in vivo. Int J Infect Dis 2000; 4(3):118-122.
  59. Liang AH, Xue BY, Liang RX et al. Inhibitory effect of egg white lysozyme on ceftazidime-induced release of endotoxin from Pseudomonas aeruginosa. Xue Xue Bao 2003; 38(11):801-4.
  60. Khair OA, Devalia JL, Abdelaziz MM et al. Effect of erythromycin on Haemophilus influenzae endotoxin-induced release of IL-6, IL-8 and sICAM-1 by cultured human bronchial epithelial cells. Eur Respir J 1995; 8(9):1451-7.
  61. Orman KL, English BK. Effects of antibiotic class on the macrophage inflammatory response to Streptococcus pneumoniae. J Infect Dis 2000; 182(5):1561-1565.
  62. Gerber J, Pohl K, Sander V, Bunkowski S et al. Rifampin followed by ceftriaxone for experimental meningitis decreases lipoteichoic acid concentrations in cerebrospinal fluid and reduces neuronal damage in comparison to ceftriaxone alone. Antimicrob Agents Chemother 2003; 47(4):1313-7.
  63. Shenep JL, Mogan KA. Kinetics of endotoxin release during antibiotic therapy for experimental gram-negative bacterial sepsis. J Infect Dis 1984; 150(3):380-8.
  64. Walterspiel JN, Kaplan SL, Mason EO Jr. Protective effect of subinhibitory polymyxin B alone and in combination with ampicillin for overwhelming Haemophilus influenzae type B infection in the infant rat: evidence for in vivo and in vitro release of free endotoxin after ampicillin treatment. Pediatr Res 1986; 20(3):237-41.
  65. Johnston CA, Greisman SE. Endotoxemia induced by antibiotic therapy: a mechanism for adrenal corticosteroid protection in gram-negative sepsis. Trans Assoc Am Physicians 1984; 97:172-81.
  66. Rogers MJ, Moore R, Cohen J. The relationship between faecal endotoxin and faecal microflora of the C57BL mouse. J Hyg (Lond) 1985; 95(2):397-402.
  67. Goris H, De Boer F, Van der Waaij D. Oral administration of antibiotics and intestinal flora associated endotoxin in mice. Scand J Infect Dis 1986; 18(1):55-63.
  68. Van Leeuwen PA, Hong RW, Rounds JD et al. Hepatic failure and coma after liver resection is reversed by manipulation of gut contents: the role of endotoxin. Surgery 1991; 110(2):169-74.
  69. Stockwell JA, Huang YC, Su YF et al. Bactericidal antibiotics increase tumor necrosis factor-alpha and cardiac output in rats after cecal ligation and puncture. Circ Shock 1994; 42(2):68-75.
  70. Anderson R, Fernandes AC, Eftychis HE. Studies on the effects of ingestion of a single 500 mg oral dose of erythromycin stearate on leucocyte motility and transformation and on release in vitro of prostaglandin E2 by stimulated leucocytes. J Antimicrob Chemother 1984; 14(1):41-50.
  71. Nitsche D, Schulze C, Oesser S et al. Impact of different classes antimicrobial agents on plasma endotoxin activity. Arch Surg 1996; 131(2):192-9.
  72. Rosman C, Westerveld GJ, Van Oeveren W et al. Effect of intraperitoneal antimicrobials on the concentration of bacteria, endotoxin, and tumor necrosis factor in abdominal fluid and plasma in rats. Eur Surg Res 1996; 28(5):351-60.
  73. Yokochi T, Narita K, Morikawa A et al. Morphological change in Pseudomonas aeruginosa following antibiotic treatment of experimental infection in mice and its relation to susceptibility to phagocytosis and to release of endotoxin. Antimicrob Agents Chemother 2000; 44(1):205-6.
  74. Wang S, Wu B, Huang F. An experimental study of antibiotic – induced endotoxin release in Pseudomonas aeruginosa bacteremia inburned rats. Zhonghua Shao Shang Za Zhi 2000; 16(2):93-5.
  75. Rotimi VO, Al-Sweih NN, Anim JT et al. Influence of in-vivo endotoxin liberation on antib-anaerobic antimicrobial efficacy. J Chemother 2001; 13(5):510-8.
  76. Xu N, Yuan J, Xiao G et al. An experimental study of the LPS release from gram-negative bacteria induced by antibiotics (Part two). Zhonghua Shao Shang Za Zhi 2002; 18(2):92-4.
  77. Vianna RC, Gomes RN, Bozza FA et al. Antibiotic treatment in a murine model of sepsis: impact on cytokines and endotoxin release. Shock 2004; 21(2):115-20.
  78. Friedland IR, Jafari H, Ehrett S et al. Comparison of endotoxin release by different antimicrobial agents and the effect on inflammation in experimental Escherichia coli meningitis. J Infect Dis 1993; 168(3):657-62.
  79. Jauris-Heipke S, Leake ER, Billy JM et al. The effect of antibiotic treatment on the release of endotoxin during nontypable Haemophilus influenzae-induced otitis media in the chinchilla. Acta Otolaryngol 1997; 117(1):109-12.
  80. Bottcher T, Ren H, Goiny M et al. Clindamycin is neuroprotective in experimental Streptococcus pneumoniae meningitis compared with ceftriaxone. J Neurochem 2004; 91(6):1450-60.
  81. D’Agostino P, La Rosa M, Barbera C et al. Doxycycline reduces mortality to lethal endotoxemia by reducing nitric oxide synthesis via an interleukin-10-independent mechanism. J Infect Dis 1998; 177(2):489-92.
  82. Carney DE, Lutz CJ, Picone AL et al. Matrix metalloproteinase inhibitor prevents acute lung injury after cardiopulmonary bypass. Circulation 1999; 27;100(4):400-6.
  83. Lalu MM, Gao CQ, Schulz R. Matrix metalloproteinase inhibitors attenuate endotoxemia induced cardiac dysfunction: a potential role for MMP-9. Mol Cell Biochem 2003; 251(1-2):61-6.
  84. Opal SM, Palardy JE, Parejo N et al. Lipopolyamines as a therapeutic strategy in experimental Gram-negative bacterial sepsis. J Endotoxin Res 2001; 7(1):35-8.
  85. Lin Y, Leach WJ, Ammons WS. Synergistic effect of a recombinant N-terminal fragment of bactericidal/permeability-increasing protein and cefamandole in treatment of rabbit gram-negative sepsis. Antimicrob Agents Chemother 1996; 40(1):65-9.
  86. Hirata N, Hiramatsu K, Kishi K et al. Pretreatment of mice with clindamycin improves survival of endotoxin shock by modulating the release of inflammatory cytokines. Antimicrob Agents Chemother 2001; 45(9):2638-42.
  87. Bucklin SE, Morrison DC. Bacteremia versus endotoxemia in experimental mouse leukopenia--role of antibiotic chemotherapy. J Infect Dis 1996; 174(6):1249-54.
  88. Teklu B, Habte-Michael A, Warrell DA et al. Meptazinol diminishes the Jarisch-Herxheimer reaction of relapsing fever. Lancet. 1983; 1(8329):835-9.
  89. Arditi M, Ables L, Yogev R. Cerebrospinal fluid endotoxin levels in children with H. influenzae meningitis before and after administration of intravenous ceftriaxone. J Infect Dis 1989; 160(6):1005-11.
  90. Mustafa MM, Mertsola J, Ramilo O et al. Increased endotoxin and interleukin-1 beta concentrations in cerebrospinal fluid of infants with coliform meningitis and ventriculitis associated with intraventricular gentamicin therapy. J Infect Dis 1989; 160(5):891-5.
  91. Prins JM, Van Agtmael MA, Kuijper EJ et al. Antibiotic-induced endotoxin release in patients with gram-negative urosepsis: a double-blind study comparing imipenem and ceftazidime. J Infect Dis 1995; 172(3):886-91.
  92. Giamarellou-Bourboulis EJ, Perdios J et al. Impact of cefuroxime administration on endotoxin (LPS) and tumour necrosis factor-alpha (TNFalpha) blood levels in patients suffering from acute pyelonephritis: a preliminary report. Int J Antimicrob Agents 1999; 11(2):115-9.
  93. Luchi M, Morrison DC, Opal S et al. A comparative trial of imipenem versus ceftazidime in the release of endotoxin and cytokine generation in patients with gram-negative urosepsis. Urosepsis Study Group. J Endotoxin Res 2000; 6(1):25-31.
  94. Holzheimer RG, Hirte JF, Engelhardt W et al. Different endotoxin release and IL-6 plasma levels after antibiotic administration in surgical intensive care patients. J Endotoxin Res 1996; 3(3):261-267.
  95. Ishikawa M, Miyauchi T, Yagi K et al. Clinical relevance of antibiotic-indueced endotoxin release in patients undergoing hepatic resection. World J Surg 1999; 23(1):75-79.
  96. Byl B, Clevenbergh P, Kentos A et al. Ceftazidime- and imipenem-induced endotoxin release during treatment of gram-negative infections. Eur J Clin Microbiol Infect Dis 2001; 20(11):804-7.
  97. Maskin B, Fontan PA, Spinedi EG et al. Evaluation of endotoxin release and cytokine production induced by antibiotics in patients with Gram-negative nosocomial pneumonia. Crit Care Med 2002; 30(2):349-54.
  98. Holzheimer RG. Oral antibiotic prophylaxis can influence the inflammatory response in aortic aneurysm repair: results of a randomized clinical study. J Chemother 2003; 15(2):157-64.
  99. Simpson AJ, Opal SM, Angus BJ et al. Differential antibiotic-induced endotoxin release in severe melioidosis. J Infect Dis 2000; 181(3):1014-9.
  100. Wang HM, Cao WF, Peng YZ et al. Changes in plasma levels of LPS, TNFalpha and IL-6 in burn patients with severe infection treated with imipenem or cefoperazone. Zhonghua Shao Shang Za Zhi 2004; 20(2):95-7.
  101. Jaber BL. Pyrogenic reactions following gentamicin therapy: an alternative explanation. Med Hypotheses 2001; 57(6):727-8.

© Está  expresamente prohibida la redistribución y la redifusión de todo o parte de los  contenidos de la Sociedad Iberoamericana de Información Científica (SIIC) S.A. sin  previo y expreso consentimiento de SIIC
anterior.gif (1015 bytes)

Bienvenidos a siicsalud
Acerca de SIIC Estructura de SIIC


Sociedad Iberoamericana de Información Científica (SIIC)
Mensajes a SIIC

Copyright siicsalud© 1997-2024, Sociedad Iberoamericana de Información Científica(SIIC)