CITRATO DE SILDENAFIL EN MODELOS EXPERIMENTALES DE SINDROMES CORONARIOS AGUDOS





CITRATO DE SILDENAFIL EN MODELOS EXPERIMENTALES DE SINDROMES CORONARIOS AGUDOS

(especial para SIIC © Derechos reservados)
En modelos experimentales de angina inestable y de síndrome coronario agudo, el sildenafil no exacerba la isquemia.
przyklenk.jpg Autor:
Karin Przyklenk
Columnista Experto de SIIC
Artículos publicados por Karin Przyklenk
Coautor
Rakesh Kukreja* 
PhD, Medical Collage of Virginia, Virginia Commonwealth University, Richmond, EE.UU.*
Recepción del artículo
7 de Abril, 2003
Primera edición
11 de Julio, 2003
Segunda edición, ampliada y corregida
7 de Junio, 2021

Resumen
La investigación reciente prestó máxima atención a la seguridad y a las consecuencias cardiovasculares del citrato de sildenafil en el contexto de la enfermedad coronaria. En esta revisión, presentamos las evaluaciones realizadas en nuestros estudios de la acción del sildenafil en modelos experimentales de síndromes coronarios agudos. Las observaciones demuestran que el fármaco no exacerba la isquemia en perros con estenosis coronaria -modelo que simula la situación clínica de la "hibernación a corto plazo"- o con angina inestable. Más aún, brindamos evidencia del efecto protector del sildenafil en conejos y modelos murinos de infarto agudo de miocardio.

Palabras clave
Isquemia de miocardio, infarto de miocardio, flujo coronario, estenosis coronaria


Artículo completo

(castellano)
Extensión:  +/-10.3 páginas impresas en papel A4
Exclusivo para suscriptores/assinantes

Abstract
Considerable recent interest has focused on the safety and cardiovascular consequences of sildenafil citrate in the setting of coronary artery disease. Our aim in this review is to summarize our experimental studies evaluating the effects of sildenafil in experimental models of acute ischemic syndromes. We report that sildenafil does not exacerbate ischemia in canine models of coronary artery stenosis mimicking clinical instances of \'short-term hibernation\' and unstable angina. Moreover, we provide evidence of sildenafil-induced cardioprotection in rabbit and murine models of acute myocardial infarction.

Key words
Isquemia de miocardio, infarto de miocardio, flujo coronario, estenosis coronaria


Full text
(english)
para suscriptores/ assinantes

Clasificación en siicsalud
Artículos originales > Expertos del Mundo >
página   www.siicsalud.com/des/expertocompleto.php/

Especialidades
Principal: Farmacología
Relacionadas: Cardiología, Medicina Interna, Urología



Comprar este artículo
Extensión: 10.3 páginas impresas en papel A4

file05.gif (1491 bytes) Artículos seleccionados para su compra



Bibliografía del artículo
  1. Cheitlin MD, Hutter AM, Brindis RG et al. Use of sildenafil (Viagra) in patients with cardiovascular disease. J Am Coll Cardiol 1999;33:273-282.
  2. Kloner RA. Cardiovascular risk and sildenafil.. Am J Cardiol 2000;86 (Suppl F): 57F-61F.
  3. Gillies HC, Roblin D, Jackson G. Coronary and systemic hemodynamic effects of sildenafil citrate: from basic science to clinical studies in patients with cardiovascular disease. Int J Cardiol 2002;86:131-141.
  4. Przyklenk K, Kloner RA. Sildenafil citrate (Viagra) does not exacerbate myocardial ischemia in canine models of coronary artery stenosis. J Am Coll Cardiol 2001;37:286-292.
  5. Ockaili R, Salloum F, Hawkins J, Kukreja RC. Sildenafil (Viagra) indices powerful cardioprotective effect via opening of mitochondrial KATP channels in rabbits. Am J Physiol 2002;283:H1263-H1269.
  6. Hermann HC, Chang G, Klugherz BD, Mahoney PD. Hemodynamic effects of sildenafil in men with severe coronary artery disease. New Engl J Med 2000;342:1622-1626.
  7. Halcox JPJ, Nour KRA, Zalos G et al. The effect of sildenafil on human vascular function, platelet activation and myocardial ischemia. J Am Coll Cardiol 2002;40:1232-1240.
  8. Bocchi EA, Guimarães G, Mocelin A, Bacal F, Bellotti G, Ramires JF. Sildenafil effects on exercise, neurohumoral activation and erectile dysfunction in congestive heart failure: a double-blind, placebo-controlled, randomized study followed by a prospective treatment for erectile dysfunction. Circulation 2002;106:1097-1103.
  9. Arruda-Olson AM, Mahoney DW, Nehra A, Leckel M, Pellikka PA. Cardiovascular effects of sildenafil during exercise in men with known or probable coronary artery disease. JAMA 2002;287:719-725.
  10. Heusch G. Hibernating myocardium. Physiol Rev 1998;78:1055-1085.
  11. Chen Y, Du R, Traverse JH, Bache RJ. Effect of sildenafil on coronary active and reactive hyperemia. Am J Physiol 2000;279:H2319-H2325.
  12. Traverse JH, Chen YJ, Du R, Bache RJ. Cyclic nucleotide phosphodiesterase type 5 activity limits blood flow to hypoperfused myocardium during exercise. Circulation 2000;102:2997-3002.
  13. Folts JD. An in vivo model of experimental arterial stenosis, intimal damage and periodic thrombosis. Circulation 1991;83 (Suppl IV):IV3-IV14.
  14. Hata K, Whittaker P, Kloner RA, Przyklenk K. Brief antecedent ischemia attenuates platelet-mediated thrombosis in damaged and stenotic canine coronary arteries: role of adenosine. Circulation 1998;97:692-702.
  15. Ikeda H, Koga Y, Kuwano K et al. Cyclic flow variations in conscious dog model of coronary artery stenosis and endothelial injury correlate with acute ischemic heart disease syndromes in humans. J Am Coll Cardiol 1993;21:1008-1017.
  16. Kitakaze M, Hori M, Sato H, et al. Endogenous adenosine inhibits platelet aggregation during myocardial ischemia in dogs. Circ Res 1991;69:1402-1409.
  17. Wallis RM, Corbin JD, Francis SH, Ellis P. Tissue distribution of phosphodiesterase families and the effects of sildenafil on tissue cyclic nucleotides, platelet function and the contractile responses of trabeculae carnae and aortic rings in vitro. Am J Cardiol 1993;83 (Suppl 5A):3C-12C.
  18. Haslam RJ, Dickinson NT, Jang EK. Cyclic nucleotides and phosphodiesterases in platelets. Thromb Haemostasis 1999;82:4123-4132.
  19. Berkels R, Klotz T, Engelmann U, Klaus W. Modulation of human platelet aggregation by the phosphodiesterase type 5 inhibitor sildenafil. J Cardiovasc Pharmacol 2001;37:413-421.
  20. Stief CG, Uckert S, Becker AJ et al. Effect of sildenafil on cAMP and cGMP levels in isolated human cavernousum and cardiac tissue. Urology 2000;55:146-150.
  21. Schalcher C, Schad K, Brunner-La Rocca HP et al. Interaction of sildenafil with cAMP-mediated vasodilation in vivo. Hypertension 2002;40:763-767.
  22. Sugiyama A, Takeuchi N, Saegusa Y, Sugita M, Hashimoto K. Molecular mechanisms of cardiostimulatory effects of sildenafil. Jpn J Pharmacol 2002;88:362-364.
  23. Li Z, Xi X, Gu M et al. A stimulatory role for cGMP-dependent protein kinase in platelet activation. Cell 2003;112:77-86.
  24. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 1986;74:1124-1136.
  25. Cohen MV, Yang XM, Liu GS, Heusch G, Downey JM. Acetylcholine, bradykinin, opioids, and phenylephrine, but not adenosine, trigger preconditioning by generating free radicals and opening mitochondrial KATP channels. Circ Res 2001;89:273-278.
  26. Janin Y, Qian YZ, Hoag J, Elliott GT, Kukreja RC. Pharmacologic preconditioning with monophosphoryl lipid A is abolished by 5-hydroxydecanoate, a specific inhibitor of the KATP channel. J Cardiovasc Pharmacol 32;1998:337-342.
  27. Tajero-Taldo MI, Gursoy E, Kukreja RC. a-adrenergic receptor stimulation produces late preconditioning through inducible nitric oxide synthase in mouse heart. J Mol Cell Cardiol 2002;34:185-195.
  28. Zhao TC, Kukreja RC. Late preconditioning elicited by activation of adenosine A3 receptor in heart: role of NF- kB, iNOS and mitochondrial KATP channel. J Mol Cell Cardiol 2002;34:263-277.
  29. Kostiprapa C, Ockaili R, Kukreja RC. Bradykinin B2 receptor is involved in the late phase of preconditioning in rabbit heart. J Mol Cell Cardiol 2001;33:1355-1362.
  30. Han J, Kim N, Kim E, Ko WK, Earm YE. Modulation of ATP-sensitive potassium channels by cGMP-dependent protein kinase in rabbit ventricular myocytes. J Biol Chem 2110;726:22140-22147.
  31. Scewczyk A. The ATP-regulated K+ channel in mitochondria: five years after its discovery. Acta Biochim Pol 1996;43:713-719.
  32. Xi L, Jarrett NC, Hess ML, Kukreja RC. Essential role of inducible nitric oxide synthase in monophosphoryl lipid A-induced late cardioprotection: evidence from pharmacological inhibition and gene knockout mice. Circulation 1999;99:2157-2163.
  33. Xi L, Salloum F, Tekin D, Jarrett NC, Kukreja RC. Glycolipid RC-552 induces delayed preconditioning-like effect via iNOS-dependent pathway in mice. Am J Physiol 1999;277:H2418-H2424.
  34. Zhao TC, Taher MM, Valerie KC, Kukreja RC. p38 Triggers late preconditioning elicited by anisomycin in heart: involvement of NF-B and iNOS. Circ Res 2001;89:915-922.
  35. Zhao TC, Xi L., Chelliah J., Levasseur JE, Kukreja RC. Inducible nitric oxide synthase mediates delayed protection induced by activation of adenosine A1 receptors: evidence from gene knockout mice. Circulation 2000;102:902-907.
  36. Salloum F, Yin C, Xi L, Kukreja RC. Sildenafil induces delayed preconditioning through inducible nitric oxide synthase-dependent pathway in mouse heart. Circ Res 2003; 92: in press, April.

Título español
Resumen
 Palabras clave
 Bibliografía
 Artículo completo
(exclusivo a suscriptores)
 Autoevaluación
  Tema principal en SIIC Data Bases
 Especialidades

 English title
 Abstract
 Key words
Full text
(exclusivo a suscriptores)

Autor 
Artículos
Correspondencia

Patrocinio y reconocimiento
Imprimir esta página
 
 
 
 
 
 
 
 
 
 
 
 
Está expresamente prohibida la redistribución y la redifusión de todo o parte de los contenidos de la Sociedad Iberoamericana de Información Científica (SIIC) S.A. sin previo y expreso consentimiento de SIIC.
ua31618